收藏 分享(赏)

2019年全国统一高考数学试卷(理科)(新课标ⅱ)(原卷版).docx

上传人:a****2 文档编号:2835204 上传时间:2024-01-05 格式:DOCX 页数:5 大小:218.04KB
下载 相关 举报
2019年全国统一高考数学试卷(理科)(新课标ⅱ)(原卷版).docx_第1页
第1页 / 共5页
2019年全国统一高考数学试卷(理科)(新课标ⅱ)(原卷版).docx_第2页
第2页 / 共5页
2019年全国统一高考数学试卷(理科)(新课标ⅱ)(原卷版).docx_第3页
第3页 / 共5页
2019年全国统一高考数学试卷(理科)(新课标ⅱ)(原卷版).docx_第4页
第4页 / 共5页
2019年全国统一高考数学试卷(理科)(新课标ⅱ)(原卷版).docx_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、2019年普通高等学校招生全国统一考试(全国卷)理科数学本试卷共5页。考试结束后,将本试卷和答题卡一并交回。注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分在每小题给出

2、的四个选项中,只有一项是符合题目要求的1设集合A=x|x2-5x+60,B= x|x-1b,则Aln(ab)0 B3a0 Dab7设,为两个平面,则的充要条件是A内有无数条直线与平行 B内有两条相交直线与平行 C,平行于同一条直线 D,垂直于同一平面8若抛物线y2=2px(p0)的焦点是椭圆的一个焦点,则p=A2 B3 C4 D89下列函数中,以为周期且在区间(,)单调递增的是Af(x)=cos 2x Bf(x)=sin 2x Cf(x)=cosx Df(x)= sinx10已知(0,),2sin 2=cos 2+1,则sin =A B C D11设F为双曲线C:的右焦点,为坐标原点,以为直径

3、的圆与圆交于P,Q两点.若,则C的离心率为A B C2D12设函数的定义域为R,满足,且当时,.若对任意,都有,则m的取值范围是AB C D二、填空题:本题共4小题,每小题5分,共20分13我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为_.14已知是奇函数,且当时,.若,则_.15的内角的对边分别为.若,则的面积为_.16中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形

4、状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有_个面,其棱长为_.(本题第一空2分,第二空3分.)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答第22、23为选考题,考生根据要求作答(一)必考题:共60分。 17(12分)如图,长方体ABCDA1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEEC1.(1)证明:BE平面EB1C1;(2)若AE=A1E

5、,求二面角BECC1的正弦值.18(12分)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.19(12分)已知数列an和bn满足a1=1,b1=0, ,.(1)证明:an+bn是等比数列,anbn是等差数列;(2)求an和bn的通项公式.20(12分)已知函数.(1)讨论f(x)的单调性,并证明

6、f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线y=ln x 在点A(x0,ln x0)处的切线也是曲线的切线.21(12分)已知点A(2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PEx轴,垂足为E,连结QE并延长交C于点G.(i)证明:是直角三角形;(ii)求面积的最大值.(二)选考题:共10分请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分22选修4-4:坐标系与参数方程(10分)在极坐标系中,O为极点,点在曲线上,直线l过点且与垂直,垂足为P.(1)当时,求及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程. 23选修4-5:不等式选讲(10分)已知 (1)当时,求不等式的解集;(2)若时,求的取值范围.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2