1、武汉市2019届高中毕业生二月调研测试理科数学参考答案及评分细则一、选择题题号123456789101112答案BACACBDACCDB二、填空题13.-12 14.e 15.2n-116.三、解答题17.:(1)sin2C+sinA=0知2sinC cosC+sinA=0.2ca2+b2-c2+a=02ab.c(a2+b2-c2)+a2b=0,而a=2,b=3,.c(4+9-c2)+12=0,即c3-13c-12=0,.(c+1)(c+3)(c-4)=0,而c0,.c=4.(6分)(2)在ABC中,由余弦定理得:cosB-0 8-6-316is.ABC的面积S=acsinB-is.(12分)
2、18.解:(1)BDD1B1为矩形,且平面BDD1B1平面ABCD,.BB1平面ABCD,DD1平面ABCD在RtD1DC中,D1C=5,AD1=2,AB1=2,连AC,在梯形ABCD中,DAB=90,AD=AB=1,DC=2.AC=5,BC=2,从而B1C=3在B1D1C中,D1C=5,B1D1=BD=2,B1C=3,可知B1CB1D1在B1CA中,B1C=.3,AB1=.2,AC=.5,可知B1CAB1BDAB1=B1-.B1C面 B1D1A,又 AD1C面 BD1A,.CB1 AD1.(6分)(2)取AD1中点E,连B1E,CE由B1D1=AB1=2知B1EAD1D1由CD1=AC=5知
3、CEAD1由(1)知B1C面B1D1AB1则B1EC=90EB1EC为二面角B1-AD1-C的C平面角又B1E=,ABtanB1EC=262cosB1EC=(12分)19.解:(1)由已知条件得:r=6.-1022-10y2r=1.222=0.997这说明y与x正相关,且相关性很强(5分)(2)由已知求得x=1.445,y=2.731,a=y-bx=2.731-1.2221.445=0.965所求回归直线方程y=1.222x+0.965.(8分)当x=1.98时,y=1.2221.98+0.965=3.385(万元)此时产品的总成本为3.385万元.20.解:(1)依题意,2a=4,a=2,而
4、e=.b=2,从而椭圆方+0)方法1:当直线AB斜率存在时,设直线AB:y=k(x-1)与椭圆交于A(x1,y1),B(x,),Q点设为(x,y)由y=k(x-1)代人x2+2y2=4中得到(2k2+1)x2-4kx+2k2-4=0显然0-2-4k1+2=2k2+12k2-4x1x2=2k2+1由已知条件k1+k2=2k得yo-x1yo-y2.2yox一x1一x2x-1()()=0将y1=k(x1-1),y2=k(x1-1)代人整理得:(x1-1)(yo-kx0+k)(x2-1)(yo-kx0+k)=0,而yo-kx0+k=0(x0-x1)(x0-1)(x0-x2)(x0-1)即:x1-1+x
5、2-1=0 x0-x1x0-x2即:(x0+1)(x1+x2)-2x1x2-2x0=0(x+1)-2-2x=0即:(x0+1)4k2-4k2+8-2x0-4k2x0=0 x=4当直线AB斜率不存在时,经检验符合题意综上:点Q轨迹方程为x=4(12分)方法2:当直线AB斜率存在时,设直线AB:y=k(x-1)与椭圆交于A(x1,y1),B(x2,y2),Q点设为(x,)由y=k(x-1)代人x2+2y2=4中得到(2k2+1)x2-4k2x+2k2-4=0,显然0,4k2x1+x2=2k2+12k2-4x1x2=2k2+1直线AQ的斜率k1=-_k(x-1)-=k+(kx-k-y)x同理知k2=
6、k+(kxo-k-y)一xk+k2=2k+(kx-k-y)(+)x-xx2-x1+x2-2x=2k+(kxo-k-yo)-x1x2-x0(x1+x2)+x由代人可知:4k2-2xo(2k2+1)2yo由k1+k2=2k得2k+(kx-k-y)2k2-4-4k2x+x2(2k2+1)x-1-3-2k2(1-)-yo化为k+(-02名-1+话-42(1-)-0=6-0-0(-k-0)2k(-1)2+6-4布-1又%率k(0-1)2(1-)-0=-122(。-1)2+6-46-可-2(0-1)2-号+0=-2k2(0-1)2+4-x0.0=4当直线AB斜率不存在时,经检验符合题意综上:点Q的轨迹方程
7、为:x=4(12分)21.解:(1)由fx)=(ax-x2)e求导数得f(x)=(a-2x)e+(ax-x2)ef(x)=-x2-(a-2)x-ae,=(a-2)2-4(-a)=a2+40.x2-(a-2)x-a=0,有两个不同的实根x1,2,(x10所求a的范围为0,号】(6分)(2)解:f(x)=-x2+(a-2)x+ae名1,x2是八x)极值点(x10台(x1-2-2)e+(2-名1-2)e0(名-为-2)+(2-x1-2)e-10令=-,则=品名=名+)-场两=v公+4号从而,只需-(+2)+(:-2)心0,对:号恒成立-4一又令h(t)=-(t+2)+(t-2)e面h(t)=-1+(
8、t-1)e在,+)上单调递增&(t)()=-1+号0.h(t)h()=-+e=(e-11)又ln112.3982.4=号110.(12分)22.:(1)由C1:p2-4psin+3=0 x2+y2-4y+3=0,即C1的直角坐标方程为:x2+y2-4y+3=0;由C2:psin(0-)=-得psin0-pcos0+=0.y-x+1=0,即C2的直角坐标方程为x-y-1=0.(5分)(2)x2+y2-4y+3=0与y轴交于点A(0,3),B(0,1),而B(0,1)关于直线y=x-1对称点B1(2,-1),|PA|+|PB|AB1|=(2-0)2+(3+1)2=25.(10分)23.解:(1)当a=1时,由f(x)0,得2x+11x-1.4(x+1)2-(x-1)20.(3x+1)(x+3)0 x-或x0解集为xx-(2)f(x)=2lx+11-1x-alx对xR恒成立.即21x+11-1x-ax即lx-al2x+11-x即-21x+11+xx-a2x+11-x.2x-2x+11a2x+1对xR恒成立显然(21x+11)=0令g(x)=2x-21x+11g(x)在(-,-1单调递增g(x)=-2-2a0(10分)-5-