1、应用数学MATHEMATICA APPLICATA2023,36(4):915-921带有分数阶耗散项的Magneto-Micropolar方程组的整体适定性石婷,张辉(安庆师范大学数理学院,安徽 安庆 246133)摘要:本文通过对三维磁场微极流方程组(Magneto-Micropolar fluid)的非线性结构进行细致分析并结合能量估计的方法,对一类带有分数阶耗散项的磁场微极流方程组解的整体适定性进行了研究,获得了当 52时磁场微极流方程组解的整体适定性.关键词:磁场微极流方程组;分数阶耗散项;整体适定性中图分类号:O175.29AMS(2010)主题分类:35Q35;76W05文献标识
2、码:A文章编号:1001-9847(2023)04-0915-071.引言及主要结果在R3中考虑带有分数阶耗散项的磁场微极流方程组(Magneto-micropolar equations),描述如下:tu+(u )u+(+)()u+p=(b )b+2 ,t+(u )+()+4=2 u+,tb+(u )b+()b=(b )u,u=b=0,(u,b)(x,0)=(u0(x),0(x),b0(x).(1.1)其中u=(u1,u2,u3)表示流体的速度,=(1,2,3)是微旋转速度场,b=(b1,b2,b3)是磁场,p(t,x)R表示流体的压力,是各种粘性系数,(u0,0,b0)是给定的初始值,且在
3、分布意义下满足 u0=b0=0.分数阶拉普拉斯算子=()12可以通过傅里叶变换定义,即df()=|f(),0.磁场微极流方程组已经被许多学者所研究,ZHANG,YAO与WANG1建立了Triebel-Lizorkin空间中三维磁场微极流方程组的正则性准则.Gala2建立了Morrey-Campanto空间中在三维情况下不可压磁场微极流方程组的正则性准则.YUAN3研究了三维不可压磁场微极流方程组弱解的正则性准则和光滑解的爆破准则.LIU,SUN和MENG4证明了在三维情形下带阻尼的磁场微极流方程组的整体适定性.磁场微极流方程组是不可压缩流体力学方程组中一个相当完整的系统.在一定条件下,可以退化
4、成一些经典的方程组.如NS方程组(=b=0;=0),MHD方程组(=0;=0)和收稿日期:2022-09-16基金项目:国家自然科学基金(31971185)作者简介:石婷,女,汉族,安徽人,研究方向:偏微分方程.916应用数学2023微极流方程组(b=0).由于上述流体模型在数学和物理上有很重要的应用,数学研究者关于上述流体模型产生了浓厚的兴趣,其整体适定性问题受到了广泛的关注.对于MHD方程组的一些结果可参考文5-9,微极流方程组的一些结果可参考文10-14.对于二维情形下的磁场微极流方程组(1.1)其适定性问题已经得到了广泛的研究,如Yamazaki15利用方程组的特殊结构和Littlew
5、ood-Paley分解技术,成功得到了方程组解的整体正则性(=0).SHANG和WU16研究了不同耗散情况下的二维广义不可压磁场微极流体方程组的整体正则性.本文考虑三维情形下带有分数阶耗散项的广义磁场微极流方程组解的的整体适定性问题.最近,文17建立了当 54,0 0,+52,+74(1.2)时解的整体适定性.受到上述研究的启发,本文通过对方程组的结构进行细致分析并结合能量方法建立了如下的结论:定理1.1假设(u0(x),0(x),b0(x)H3(R3)且 u0=b0=0,则对带有分数阶耗散项的磁场微极流方程组tu+(u )u+(+)()u+p=(b )b+2 ,t+(u )+4=2 u+,t
6、b+(u )b=(b )u,u=b=0,(u,b)(x,0)=(u0(x),0(x),b0(x).(1.3)若 52,则对任意的T 0,有(u,b)L(0,T;H3(R3)是方程组(1.3)唯一的整体解.注1.1相对于文17,本文的微旋度场和磁场没有耗散项,得到的结果可以看成是文17关于分数阶磁场微极流方程解的适定性结论的一个补充,即使对于分数阶微极流方程组(b=0),定理1.1也是一个新的结果.注1.2为了使计算简便,本文假设方程组(1.3)中的粘性系数=12;=1,函数的Lp-范数用 Lp表示,Hs-范数用 Hs表示.2.定理1.1的证明为了获得更高的能量估计,需要如下的交换子估计18:引
7、理2.1令s 0,1 r ,有s(fg)Lr C(fLp1sgLq1+sfLp2gLq2)(2.1)和s,fg)Lr C(fLp1s1gLq1+sfLp2gLq2)(2.2)其中q1,p2(1,)和p1,q2 1,且满足1r=1p1+1q1=1p2+1q2.定理1.1的证明 证明分成三步,第一步是对(u,b)做H1估计;第二步是对(u,b)做H2估计;第三步是对(u,b)做H3估计.为了简便,令=52.第一步:为了获得H1-估计,首先做L2估计,将方程组(1.3)的第一个方程乘上u,第二个方程乘上,第三个方程乘上b,在R3上积分,并结合分部积分方法,有12ddt(u2L2+2L2+b2L2)+
8、52u2L2+22L2+2L2第 4 期石婷等:带有分数阶耗散项的Magneto-Micropolar方程组的整体适定性917=R3()udx+R3(u)dx 2u2L22L2 C2L2+1252u2L2,(2.3)其中,利用 u=0和 b=0,并通过分部积分有R3u u udx=0,R3u dx=0,R3u b bdx=0,R3p udx=0,R3b b udx+R3b u bdx=0.(2.4)对(2.3)利用Gronwall不等式,可得u2L2+2L2+b2L2+t052u2L2d C(t,u0,0,b0).(2.5)其次,对(u,b)做H1-估计,将方程组(1.3)的第一个方程乘上u,
9、第二个方程乘上,第三个方程乘上b,在R3上积分,并通过分部积分得到12ddt(u2L2+2L2+b2L2)+72u2L2+22L2+2L2=R3u u udx+R3u dx+R3u b bdx+R3b b udx+R3b u bdx+R3()udx+R3(u)dx=7i=1Ki.(2.6)下面利用 u=0,并结合H older不等式,Gagliardo-Nirenberg不等式,Young不等式等对(2.6)式右边分别进行逐项估计(i)估计K1+K2+K3,K1+K2+K3=|R3u u u+u +u b bdx|=|R3uiiujkkuj+uiijkkj+uiibjkkbjdx|=|R3ku
10、iiujkuj+kuiijkj+kuiibjkbjdx|CuL(u2L2+2L2+b2L2).(2.7)(ii)估计K4,K4=|R3b b udx|CbL6uL3bL2 Cb2L2uL3.(2.8)(iii)估计K5,K5=|R3b u bdx|=|R3biiujkkbjdx|=|R3kbiiujkbjdx R3bikiujkbjdx|CuLb2L2+CbL6uL3bL2CuLb2L2+CuL3b2L2.(2.9)(iv)估计K6+K7,K6+K7=R3()udx+R3(u)dx918应用数学2023CL2uL2Cu2L2+C2L21272u2L2+C2L2.(2.10)联立上面所有的结果代
11、入(2.6),有12ddt(u2L2+2L2+b2L2)+1272u2L2C(uL+uL3+1)(u2L2+2L2+b2L2)C(uL+52uL2+1)(u2L2+2L2+b2L2).(2.11)第二步:H2-估计,用算子作用于方程组(1.3)的前三个方程,然后将方程组(1.3)的第一个方程乘上u,第二个方程乘上,第三个方程乘上b,在R3上积分,并通过分部积分有12ddt(u2L2+2L2+b2L2)+92u2L2=R3(u u)udx R3(u )dx R3(u b)bdx+R3(b b)udx+R3()udx+R3(u)dx+R3(b u)bdx=7i=1Hi.(2.12)利用引理2.1,
12、并结合H older不等式,Gagliardo-Nirenberg不等式,Young不等式等对(2.12)式右边分别进行逐项估计(i)估计H1,H1=|R3(u u)udx|=|R3(u u)u (u)udx|CuLu2L2.(2.13)(ii)估计H2,H2=|R3(u )dx|CuL2L2+CuL3L6L2CuL2L2+CuL32L2C(uL+uL3)2L2.(2.14)(iii)估计H3,H3=|R3(u b)bdx|C(uL+uL3)b2L2.(2.15)(iv)估计H4,H4=R3(b b)udx CbL63bL2uL3CuL3(b2L2+3b2L2).(2.16)(v)估计H5+H
13、6,H5+H6=R3()udx+R3(u)dx23uL2L2 292u25L2u35L2L21292u2L2+C2L2+Cu2L2.(2.17)第 4 期石婷等:带有分数阶耗散项的Magneto-Micropolar方程组的整体适定性919(vi)估计H7,H7=|R3(b u)bdx|=|R3(b u)bdx|C(bL2uL+bL62uL3)3bL2C(uL+uL3)(b2L2+3b2L2).(2.18)综合上面的各项估计,代入(2.12)可得12ddt(u2L2+2L2+b2L2)+92u2L2 C(uL+uL3+1)(uL2+b2H2+2L2)C(uL+52uL2+1)(uL2+b2H2
14、+2L2).(2.19)第三步:H3-估计,用算子作用到方程组(1.3)的前三个方程,然后将方程组(1.3)的第一个方程乘上u,第二个方程乘上,第三个方程乘上b,在R3上积分,并通过分部积分得到12ddt(3u2L2+32L2+3b2L2)+112u2L2+32L2+3 2L2=R3(u u)udx R3(u )dx R3(u b)bdx+R3()udx+R3(b b)udx+R3(u)dx+R3(b u)bdx=7i=1Ai.(2.20)注意到 u=0,利用引理2.1,并结合H older不等式,Gagliardo-Nirenberg不等式,Y-oung不等式等对(2.20)式右边分别进行逐
15、项估计(i)估计A1,A1=|R3(u u)udx|=|R3(u u)u (u)udx|CuL3u2L2.(2.21)(ii)估计A2,A2=|R3(u )dx|=|R3(u )u ()dx|CuL32L2+CL33uL63L2CuL32L2+C12L2332L252u12L2112u12L2CuL32L2+C52u23L232L2+18112u2L2.(2.22)(iii)类似的,估计A3,A3=|R3(u b)bdx|CuL3b2L2+C52u23L23b2L2+18112u2L2.(2.23)(iv)估计A4+A6,A4+A6=R3()udx+R3(u)dx920应用数学202324uL
16、23L2 2112u25L23u35L23L218112u2L2+C32L2+C3u2L2.(2.24)(v)估计A5+A7,A5+A7=R3(b b)udx+R3(b u)bdxR3(b b)b (b)udx+R3(b u)b (u)bdxC3bL2bL33uL6+C3b2L2uLC3bL2bL352u12L2112u12L2+C3b2L2uLC3bL2b12L23b12L252u12L2112u12L2+C3b2L2uLC3b2L2uL+18112u2L2+C3b2L252u23L2.(2.25)将上述不等式(2.21)-(2.25)都加到一起,代入(2.20)有ddt(3u2L2+32L
17、2+3b2L2)+112u2L2C(uL+52u23L2+1)(3u2L2+32L2+3b2L2).(2.26)综合估计式(2.5)、(2.11)、(2.19)和(2.26),可得到ddt(u2H3+2H3+b2H3)+52u2H3C(uL+52u23L2+52uL2+1)(u2H3+2H3+b2H3).(2.27)由经典的对数型Sobolev不等式19有fL C(1+fBMO(1+ln(e+fH2).(2.28)代入(2.27)可得到ddt(u2H3+2H3+b2H3)+52u2H3C(1+uBMO(1+ln(e+uH3)+52u2L2)(u2H3+2H3+b2H3)C(1+52uL2(1+
18、ln(e+uH3)+52u2L2)(u2H3+2H3+b2H3).(2.29)由Gronwall不等式和基本能量估计(2.5),有3u(t)2L2+3(t)2L2+3b(t)2L2+t052u2H3d C(t,u0,0,b0).(2.30)从而完成了定理1.1的证明.参考文献:1 ZHANG Z J,YAO Z A,WANG X F.A regularity criterion for the 3D magneto-micropolar fluidequations in Triebel-Lizorkin spacesJ.Nonlinear Anal.,2011,74(6):2220-2225
19、.2 GALA S.Regularity criteria for the 3D magneto-micropolar fluid equations in the Morrey-CampanatospaceJ.Nonlinear Differential Equations Appl.,2010,17(2):181-194.3 YUAN B Q.Regularity of weak solutions to magneto-micropolar fluid equationsJ.Acta Math.Sci.,2010,30(5):1469-1480.4 LIU H,SUN C F,MENG
20、F W.Global well-posedness of the 3D magneto-micropolar equations withdampingJ.Appl.Math.Lett.,2019,94:38-43.第 4 期石婷等:带有分数阶耗散项的Magneto-Micropolar方程组的整体适定性9215 WU J H.Generalized MHD equationsJ.J.Differential Equations,2003,195(2):284-312.6 CAO C S,WU J H.Global regularity for the 2D MHD equations wit
21、h mixed partial dissipation andmagnetic diffusionJ.Adv.Math.,2011,226(2):1803-1822.7 DONG B Q,JIA Y,LI J N,et al.Global regularity and time decay for the 2D magnetohydrodynamicequations with fractional dissipation and partial magnetic diffusionJ.J.Math.Fluid Mech.,2018,20:1541-1565.8 DONG B Q,LI J N
22、,WU J H.Global regularity for the 2D MHD equations with partial hyper-resistivityJ.Int.Math.Res.Not.,2019,14:4261-4280.9 YAMAZAKI K.Global regularity of logarithmically supercritical MHD system with zero diffusivityJ.Appl.Math.Lett.,2014,29:46-51.10 GALDI G P,RIONERO S.A note on the existence and un
23、iqueness of solutions of the micropolarfluid equationsJ.Int.J.Eng.Sci.,1977,15(2):105-108.11 CHEN Q L,MIAO C X.Global well-posedness for the micropolar fluid system in critical BesovspacesJ.J.Differ.Equ.,2012,252(3):2698-2724.12 DONG B Q,ZHANG Z F.Global regularity of the 2D micropolar fluid flows w
24、ith zero angularviscosityJ.J.Differ.Equ.,2010,249(1):200-213.13 SHANG H F,LI M.Global regularity for d-dimensional micropolar equations with fractional dissi-pationJ.Appl.Anal.,2019,98(9):1567-1580.14 WANG D H,WU J H,YE Z.Global regularity of the three-dimensional fractional micropolar equa-tionsJ.J
25、.Math.Fluid Mech.,2020,22(2):28.15 YAMAZAKI K.Global regularity of the two-dimensional magneto-micropolar fluid system with zeroangular viscosityJ.Discrete Contin.Dyn.Syst.,2015,35(5):2193-2207.16 SHANG H F,WU J H.Global regularity for 2D fractional magneto-micropolar equationsJ.Math.Z,2021,297:775-
26、802.17 JIA Y,XIE Q Q,DONG B Q.Global regularity of the 3D magneto-micropolar equations withfractional dissipationJ.Z.Angew.Math.Phys.,2022,73:1-15.18 KATO T,PONCE G.Commutator estimates and the Euler and Navier-Stokes equationsJ.Comm.Pure Appl.Math.,1988,41(7):891-907.19 KOZONO H,TANIUCHI Y.Limiting
27、 case of the Sobolev inequality in BMO with application to theEuler equationsJ.Comm.Math.Phys.,2000,214:191-200.Global Regularity of the 3D Magneto-Micropolar Equationswith Fractional DissipationSHI Ting,ZHANG Hui(School of Mathematics and Physics,Anqing Normal University,Anqing 246133,China)Abstrac
28、t:In this paper,through the detailed analysis of the nonlinear structure of the magneto-micropolar equations and the method of energy estimation,the global well-posedness of the solution tothe magneto-micropolar equations with fractional-order dissipation terms in R3is studied,the globalwell-posedness of the solution of the magneto-micropolar fluid equations is obtained when 52.Key words:Magneto-Micropolar equations;Fractional dissipation;Global regularity