1、,21.2 二次函数的图象和性质,优 翼 课 件,导入新课,讲授新课,当堂练习,课堂小结,2.二次函数y=ax+bx+c的图象和性质,第1课时 二次函数y=ax+k的图象和性质,九年级数学上(HK)教学课件,1.会画二次函数y=ax2+k的图象.(重点)2.掌握二次函数y=ax2+k的性质并会应用.(难点)3.理解y=ax与 y=ax+k之间的联系.(重点),情境引入,x,y,导入新课,做一做:画出二次函数 y=2x,y=2x2+1,y=2x2-1的图象,并考虑它们的开口方向、对称轴和顶点坐标、顶点高低、函数最值、函数增减性.,3.5,1,-0.5,1,-0.5,-1,3.5,5.5,1.5,
2、3,1.5,1,3,5.5,讲授新课,y=2x2+1,y=2x2,y=2x2-1,观察上述图象,说说它有哪些特征.,探究归纳,解:先列表:,例1 在同一直角坐标系中,画出二次函数 与 的图象,描点、连线,画出这两个函数的图象,观察与思考,抛物线,的开口方向、对称轴和顶点各是什么?,向上,向上,(0,0),(0,1),y轴,y轴,想一想:通过上述例子,函数y=ax2+k(a0)的性质是什么?,y,-2,-2,4,2,2,-4,x,0,做一做在同一坐标系内画出下列二次函数的图象:,根据图象回答下列问题:(1)图象的形状都是.(2)三条抛物线的开口方向_;(3)对称轴都是_(4)从上而下顶点坐标分别是 _,抛物线,向下,直线x=0,(0,0),(0,2),(0,-2),(5)顶点都是最_点,函数都有最_值,从上而下最大值分别为_、_(6)函数的增减性都相同:_,高,大,y=0,y=-2,y=2,对称轴左侧y随x增大而增大,对称轴右侧y随x增大而减小,二次函数y=ax2+k(a 0)的性质,知识要点,例2:已知二次函数yax2+c,当x取x1,x2(x1x2)时,函数值相等,则当xx1+x2时,其函数值为_.,解析:由二次函数yax2+c图象的性质可知,x1,x2关于y轴对称,即x1+x20.把x0代入二次函数表达式求出纵坐标为c.,