1、20222023学年度(上)联合体高三期中检测数学(满分:150分,考试时间:120分钟)第卷(选择题,共60分)一、单选题(本大题共8小题,每小题5分,共40分在每小题所给的四个选项中,有且只有一项是符合题目要求的)1. 已知集合,则( )A. B. C. D. 2. 已知复数,则的虚部为( )A. 2B. C. D. 3. 已知向量,则( )A. 3B. C. 1D. 04. 荀子曰:“故不积跬步,无以至千里;不积小流,无以成江海.“这句来自先秦时期的名言.此名言中的“积跬步”是“至千里”的( )A 充分不必要条件B. 必要不充分条件C 充要条件D. 既不充分也不必要条件5. 如图,从气球
2、A上测得正前方的河流的两岸,的俯角分别为75,30,若河流的宽度是60,则此时气球的高度等于( )A. B. C. D. 第1页/共8页学科网(北京)股份有限公司6. 已知为等差数列, 为的前项和 若, 则当取最大值时, 的值为( )A. B. 4C. D. 7. 已知函数在定义域内可导,其图象如图所示.记的导函数为,则不等式的解集为( )A. B. C. D. 8. 定义在上的函数满足,若的图像关于点对称,且函数在上单调递减,则不等式的解集为( )A. B. C. D. 二、多选题(本大题共4小题,每小题5分,共20分在每小题所给的四个选项中,有多项符合题目要求全部选对的得5分,部分选对的得
3、2分,有选错的得0分)9. 已知,则下列叙述中正确的是( )A. “”是“”的充分不必要条件B. 若函数的最小值为6,则的值为4C. 若,则D. 若向量,则第2页/共8页学科网(北京)股份有限公司10. 函数在一个周期内的图象如图所示,则( )A. 该函数解析式为B. 该函数图象的对称中心为,C. 该函数的单调递增区间是,D. 把函数的图象上所有点的横坐标伸长为原来的倍,纵坐标不变,可得到该函数图象11. 在R上定义运算:,若不等式对任意实数恒成立,则实数的可能取值为( )A. B. C. D. 12. 关于函数,下列描述正确的有( )A. 在区间上单调递增B. 的图象关于直线对称C. 若则D
4、. 有且仅有两个零点第卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分)13. 命题“,”的否定是_14. 已知等比数列的公比,若,是函数的极值点,则_第3页/共8页学科网(北京)股份有限公司15. 在中,点是边上(不包含顶点)的 动点,若,则 的最小值_.16. 如图是构造无理数的一种方法: 线段; 第一步,以线段为直角边作直角三角形,其中; 第二步,以为直角边作直角三角形,其中; 第三步,以为直角边作直角三角形, 其中; ,如此延续下去,可以得到长度为无理数的一系列线段, 如, , ,则_四、解答题(本大题共6小题,共70分解答时应写出必要的文字说明、证明过程或演算
5、步骤)17. 已知数列满足:,(1)设,求证:数列是等比数列,并求其通项公式;(2)设,求18. 已知函数,(1)求函数的最大值和最小正周期;(2)设的内角,的对边分别为,且,若,求,的值19. 已知函数是R上的奇函数,当时,取得极值.(1)求的单调区间和极大值;(2)证明:对任意,不等式恒成立.20. 已知为等差数列,为等比数列,的前项和,(1)求数列,的通项公式;第4页/共8页学科网(北京)股份有限公司(2)记,求数列的前项和21. 在中,内角A,B,C所对边的长分别为a,b,c,且满足.(1)求A;(2)若,AD是中线,求AD的长.22. 已知函数,曲线和在原点处有相同的切线.(1)求的
6、值;(2)判断函数在上零点的个数,并说明理由.第5页/共8页学科网(北京)股份有限公司20222023学年度(上)联合体高三期中检测数学(满分:150分,考试时间:120分钟)第卷(选择题,共60分)一、单选题(本大题共8小题,每小题5分,共40分在每小题所给的四个选项中,有且只有一项是符合题目要求的)【1题答案】【答案】A【2题答案】【答案】C【3题答案】【答案】D【4题答案】【答案】B【5题答案】【答案】B【6题答案】【答案】C【7题答案】【答案】A【8题答案】【答案】A二、多选题(本大题共4小题,每小题5分,共20分在每小题所给的四个选项中,有多项符合题目要求全部选对的得5分,部分选对的
7、得2分,有选错的得0分)【9题答案】【答案】AB【10题答案】【答案】ACD【11题答案】【答案】CD第6页/共8页学科网(北京)股份有限公司【12题答案】【答案】ABD第卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分)【13题答案】【答案】,【14题答案】【答案】#【15题答案】【答案】#【16题答案】【答案】四、解答题(本大题共6小题,共70分解答时应写出必要的文字说明、证明过程或演算步骤)【17题答案】【答案】(1)证明见解析;. (2)4950.【18题答案】【答案】(1)的最大值为4,最小正周期为; (2)【19题答案】【答案】(1)函数的单调递减区间是,单调递增区间是和, (2)见解析【20题答案】【答案】(1), (2)第7页/共8页学科网(北京)股份有限公司【21题答案】【答案】(1) (2)【22题答案】【答案】(1)1 (2)1个零点,理由见解析第8页/共8页学科网(北京)股份有限公司