收藏 分享(赏)

2.4.1平面向量数量积的物理背景及其含义.doc

上传人:a****2 文档编号:3224896 上传时间:2024-02-06 格式:DOC 页数:7 大小:331KB
下载 相关 举报
2.4.1平面向量数量积的物理背景及其含义.doc_第1页
第1页 / 共7页
2.4.1平面向量数量积的物理背景及其含义.doc_第2页
第2页 / 共7页
2.4.1平面向量数量积的物理背景及其含义.doc_第3页
第3页 / 共7页
2.4.1平面向量数量积的物理背景及其含义.doc_第4页
第4页 / 共7页
2.4.1平面向量数量积的物理背景及其含义.doc_第5页
第5页 / 共7页
2.4.1平面向量数量积的物理背景及其含义.doc_第6页
第6页 / 共7页
亲,该文档总共7页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2.4 平面向量的数量积2.4.1 平面向量数量积的物理背景及其含义一、教学分析 前面已经知道,向量的线性运算有非常明确的几何意义,因此利用向量运算可以讨论一些几何元素的位置关系.既然向量可以进行加减运算,一个自然的想法是两个向量能否做乘法运算呢?如果能,运算结果应该是什么呢?另外,距离和角是刻画几何元素(点、线、面)之间度量关系的基本量.我们需要一个向量运算来反映向量的长度和两个向量间夹角的关系.众所周知,向量概念的引入与物理学的研究密切相关,物理学家很早就知道,如果一个物体在力F的作用下产生位移s(如图1),那么力F所做的功图1 W=|F|s|cos 功W是一个数量,其中既涉及“长度”,也

2、涉及“角”,而且只与向量F,s有关.熟悉的数的运算启发我们把上式解释为两个向量的运算,从而引进向量的数量积的定义 ab=|a|b|cos. 这是一个好定义,它不仅满足人们熟悉的运算律(如交换律、分配律等),而且还可以用它来更加简洁地表述几何中的许多结果. 向量的数量积是一种新的向量运算,与向量的加法、减法、数乘运算一样,它也有明显的物理意义、几何意义.但与向量的线性运算不同的是,它的运算结果不是向量而是数量.二、教学目标1、知识与技能:掌握平面向量的数量积及其几何意义;掌握平面向量数量积的重要性质及运算律;了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;掌握向量垂直的条件。2、过程与

3、方法:通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义;体会平面向量的数量积与向量投影的关系。3、情感态度与价值观:通过与物理中“功”的类比抽象出向量的数量积,培养学生的抽象概括能力。三、重点难点教学重点:平面向量数量积的定义.教学难点:平面向量数量积的定义及其运算律的理解和平面向量数量积的应用.四、教学设想(一)导入新课 思路1.我们前面知道向量概念的原型就是物理中的力、速度、位移以及几何中的有向线段等概念,向量是既有大小、又有方向的量,它与物理学中的力学、运动学等有着天然的联系,将向量这一工具应用到物理中,可以使物理题解答更简捷、更清晰,并且向量知识不仅是解决物理许多问题的有利

4、工具,而且用数学的思想方法去审视相关物理现象,研究相关物理问题,可使我们对物理问题认识更深刻.物理中有许多量,比如力、速度、加速度、位移等都是向量,这些物理现象都可以用向量来研究. 在物理课中,我们学过功的概念,即如果一个物体在力F的作用下产生位移s,那么力F所做的功W可由下式计算: W=|F|s|cos 其中是F与s的夹角.我们知道力和位移都是向量,而功是一个标量(数量). 故从力所做的功出发,我们就顺其自然地引入向量数量积的概念.来源:Zxxk.Com 思路2.前面我们已学过,任意的两个向量都可以进行加减运算,并且两个向量的和与差仍是一个向量.我们结合任意的两个实数之间可以进行加减乘除(除

5、数不为零)运算,就自然地会想到,任意的两个向量是否可以进行乘法运算呢?如果能,其运算结果是什么呢?(二)推进新课、新知探究、提出问题ab的运算结果是向量还是数量?它的名称是什么?由所学知识可以知道,任何一种运算都有其相应的运算律,数量积是一种向量的乘法运算,它是否满足实数的乘法运算律?我们知道,对任意a,bR,恒有(a+b)2=a2+2ab+b2,(a+b)(a-b)=a2-b2.对任意向量a、b,是否也有下面类似的结论?(1)(a+b)2=a2+2ab+b2;(2)(a+b)(a-b)=a2-b2. 活动:已知两个非零向量a与b,我们把数量|a|b|cos叫做a与b的数量积(或内积),记作a

6、b,即ab=|a|b|cos(0). 其中是a与b的夹角,|a|cos(|b|cos)叫做向量a在b方向上(b在a方向上)的投影.如图2为两向量数量积的关系,并且可以知道向量夹角的范围是0180.图2在教师与学生一起探究的活动中,应特别点拨引导学生注意:(1)两个非零向量的数量积是个数量,而不是向量,它的值为两向量的模与两向量夹角的余弦的乘积;(2)零向量与任一向量的数量积为0,即a0=0;(3)符号“”在向量运算中不是乘号,既不能省略,也不能用“”代替;(4)当00,从而ab0;当时,cos0,从而ab0.与学生共同探究并证明数量积的运算律.已知a,b,c和实数,则向量的数量积满足下列运算律

7、:ab=ba(交换律);(a)b=(ab)=a(b)(数乘结合律);(a+b)c=ac+bc(分配律).特别是:(1)当a0时,由ab=0不能推出b一定是零向量.这是因为任一与a垂直的非零向量b,都有ab=0.图3(2)已知实数a、b、c(b0),则ab=bca=c.但对向量的数量积,该推理不正确,即ab=bc不能推出a=c.由图3很容易看出,虽然ab=bc,但ac.(3)对于实数a、b、c有(ab)c=a(bc);但对于向量a、b、c,(ab)c=a(bc)不成立.这是因为(ab)c表示一个与c共线的向量,而a(bc)表示一个与a共线的向量,而c与a不一定共线,所以(ab)c=a(bc)不成

8、立.讨论结果:是数量,叫数量积.数量积满足ab=ba(交换律);(a)b=(ab)=a(b)(数乘结合律);(a+b)c=ac+bc(分配律).(1)(a+b)2=(a+b)(a+b)=ab+ab+ba+bb=a2+2ab+b2;(2)(a+b)(a-b)=aa-ab+ba-bb=a2-b2.提出问题如何理解向量的投影与数量积?它们与向量之间有什么关系?能用“投影”来解释数量积的几何意义吗? 活动:教师引导学生来总结投影的概念,可以结合“探究”,让学生用平面向量的数量积的定义,从数与形两个角度进行探索研究.教师给出图形并作结论性的总结,提出注意点“投影”的概念,如图4.来源:学科网ZXXK图4

9、定义:|b|cos叫做向量b在a方向上的投影.并引导学生思考:1投影也是一个数量,不是向量;2当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当=0时投影为|b|;当=180时投影为-|b|.教师结合学生对“投影”的理解,让学生总结出向量的数量积的几何意义:数量积ab等于a的长度与b在a方向上投影|b|cos的乘积.让学生思考:这个投影值可正、可负,也可为零,所以我们说向量的数量积的结果是一个实数.教师和学生共同总结两个向量的数量积的性质:设a、b为两个非零向量,e是与b同向的单位向量.1ea=ae=|a|cos.2abab=0.3当a与b同向时,ab=|a|b|;当a与b反向

10、时,ab=-|a|b|.特别地aa=|a|2或|a|=.4cos=.5|ab|a|b|. 上述性质要求学生结合数量积的定义自己尝试推证,教师给予必要的补充和提示,在推导过程中理解并记忆这些性质.讨论结果:略(见活动).向量的数量积的几何意义为数量积ab等于a的长度与b在a方向上投影|b|cos的乘积.(三)应用示例思路1例1 已知平面上三点A、B、C满足|=2,|=1,|=,求+的值. 活动:教师引导学生利用向量的数量积并结合两向量的夹角来求解,先分析题设然后找到所需条件.因为已知、的长度,要求得两两之间的数量积,必须先求出两两之间的夹角.结合勾股定理可以注意到A是直角三角形,然后可利用数形结

11、合来求解结果.解:由已知,|2+|2=|2,所以ABC是直角三角形.而且ACB=90,从而sinABC=,sinBAC=.ABC=60,BAC=30.与的夹角为120,与的夹角为90,与的夹角为150.故+=21cos120+1cos90+2cos150=-4. 点评:确定两个向量的夹角,应先平移向量,使它们的起点相同,再考察其角的大小,而不是简单地看成两条线段的夹角,如例题中与的夹角是120,而不是60.变式训练 已知|a|=6,|b|=4,a与b的夹角为60,求(a+2b)(a-3b).解:(a+2b)(a-3b)=aa-ab-6bb=|a|2-ab-6|b|2=|a|2-|a|b|cos

12、-6|b|2=62-64cos60-642=-72.例2 已知|a|=3,|b|=4,且a与b不共线,当k为何值时,向量a+kb与a-kb互相垂直?解:a+kb与a-kb互相垂直的条件是(a+kb)(a-kb)=0,即a2-k2b2=0.a2=32=9,b2=42=16,9-16k2=0.k=.也就是说,当k=时,a+kb与a-kb互相垂直. 点评:本题主要考查向量的数量积性质中垂直的充要条件.变式训练 已知向量a、b满足:a2=9,ab=-12,求|b|的取值范围.解:|a|2=a2=9,|a|=3.又ab=-12,|ab|=12.|ab|a|b|,123|b|,|b|4.故|b|的取值范围

13、是4,+).思路2例1 已知在四边形ABCD中,=a,=b,=c,=d,且ab=cd=bc=da,试问四边形ABCD的形状如何?解:+=0,即a+b+c+d=0,a+b=-(c+d).由上可得(a+b)2=(c+d)2,即a2+2ab+b2=c2+2cd+d2.又ab=cd,故a2+b2=c2+d2.来源:Zxxk.Com同理可得a2+d2=b2+c2.由上两式可得a2=c2,且b2=d2,即|a|=|c|,且|b|=|d|,也即AB=CD,且BC=DA,ABCD是平行四边形.故=,即a=-c.又ab=bc=-ab,即ab=,ab,即.综上所述,ABCD是矩形. 点评:本题考查的是向量数量积的

14、性质应用,利用向量的数量积解决有关垂直问题,然后结合四边形的特点进而判断四边形的形状.来源:Zxxk.Com例2 已知a,b是两个非零向量,且|a|-|b|=|a+b|,求向量b与a-b的夹角.活动:教师引导学生利用向量减法的平行四边形法则,画出以a,b为邻边的ABCD,若=a,=b,则=a+b,=a-b.由|a|-|b|=|a+b|,可知ABC=60,b与所成角是150.我们还可以利用数量积的运算,得出向量b与a-b的夹角,为了巩固数量积的有关知识,我们采用另外一种角度来思考问题,教师给予必要的点拨和指导,即由cosb,a-b=作为切入点,进行求解.解:|b|=|a+b|,|b|=|a|,b

15、2=(a+b)2.|b|2=|a|2+2ab+|b|2.ab=-|b|2.而b(a-b)=ba-b2=|b|2-|b|2=|b|2, 由(a-b)2=a2-2ab+b2=|b|2-2()|b|2+|b|2=3|b|2,来源:Zxxk.Com而|a-b|2=(a-b)2=3|b|2,|a-b|=3|b|. cosb,a-b=代入,得cosb,a-b=-.又b,a-b0,b,a-b=. 点评:本题考查的是利用平面向量的数量积解决有关夹角问题,解完后教师及时引导学生对本解法进行反思、总结、体会.变式训练设向量c=ma+nb(m,nR),已知|a|=2,|c|=4,ac,bc=-4,且b与c的夹角为1

16、20,求m,n的值.解:ac,ac=0.又c=ma+nb,cc=(ma+nb)c,即|c|2=mac+nbc.|c|2=nbc.由已知|c|2=16,bc=-4,16=-4n.n=-4.从而c=ma-4b.bc=|b|c|cos120=-4,|b|4()=-4.|b|=2.由c=ma-4b,得ac=ma2-4ab,8m-4ab=0,即ab=2m. 再由c=ma-4b,得bc=mab-4b2.mab-16=-4,即mab=12. 联立得2m2=12,即m2=6.m=.故m=,n=-4.(四)课堂小结1.先由学生回顾本节学习的数学知识,数量积的定义、几何意义,数量积的重要性质,数量积的运算律.2.教师与学生总结本节学习的数学方法,归纳类比、定义法、数形结合等.在领悟数学思想方法的同时,鼓励学生多角度、发散性地思考问题,并鼓励学生进行一题多解.(五)作业

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2