1、馨雅资源网 命题、证明及平行线的判定定理(基础)知识讲解责编:赵炜【学习目标】1.了解定义、命题的含义,会区分命题的条件(题设)和结论;2. 体会检验数学结论的常用方法:实验验证、举出反例、推理;4.了解公理和定理的定义,并能正确的写出已知和求证,掌握证明的基本步骤和书写格式;5.掌握平行线的判定方法,并能简单应用这些结论. 【要点梳理】要点一、定义与命题1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义.要点诠释:(1)定义实际上就是一种规定.(2)定义的条件和结论互换后的命题仍是真命题.2.命题:判断一件事情的句子叫做命题.真命题:正确的命题叫做真命题.假命题:不正确的命题
2、叫做假命题.要点诠释:(1)命题的结构:命题通常由条件(或题设)和结论两部分组成.条件是已知事项,结论是由已知事项推出的事项,一般地,命题都可以写成”如果那么”的形式,其中“如果”开始的部分是条件,“那么”后面是结论.(2)命题的真假:对于真命题来说,当条件成立时,结论一定成立;对于假命题来说,当条件成立时,不能保证结论正确,即结论不成立.要点二、证明的必要性要判断一个命题是不是真命题,仅仅依靠经验、观察、实验和猜想是不够的,必须一步一步、有根有据地进行推理. 推理的过程叫做证明.要点三、公理与定理1.公理:通过长期实践总结出来,并且被人们公认的真命题叫做公理. 要点诠释:欧几里得将“两点确定
3、一条直线”等基本事实作为公理.2.定理:通过推理得到证实的真命题叫做定理.要点诠释:证明一个命题的正确性要按已知、求证、证明的顺序和格式写出.其中“已知”是命题的条件,“求证”是命题的结论,而“证明”则是由条件(已知)出发,根据已给出的定义、公理、已经证明的定理,经过一步一步的推理,最后证实结论(求证)的过程.要点四、平行公理及平行线的判定定理1平行公理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质(2)公理中“有”说明存在;“只有”说明唯一
4、(3)“平行公理的推论”也叫平行线的传递性.2平行线的判定定理判定方法1:同位角相等,两直线平行.如上图,几何语言:32ABCD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:12ABCD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:42180ABCD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.【典型例题】类型一、定义与命题1请说出下列名词的定义:(1)无理数 (2)直角三角形【答案与解析】解:(1)无理数:无限不循环小数叫做无理数.(2)直角三角形:有一个角是直角的三角形叫做直角
5、三角形.【总结升华】对学过的定义要准确地牢记.举一反三:【变式】指出下列句子哪些是定义.(1)两直线平行,内错角相等;(2)两腰相等的梯形叫等腰梯形;(3)有一个角是钝角的三角形是钝角三角形;(4)等腰三角形的两底角相等;(5)平行四边形的对角线互相平分;(6)连结三角形两边中点的线段叫做三角形的中位线.【答案】(2),(3),(6)是定义.2说出下列命题的条件和结论,并判断它是真命题还是假命题:(!)如果,那么;(2)如果两个角相等, 那么它们是对顶角.【答案与解析】解:(1)条件:;结论:.它是真命题.(2)条件:两个角相等;结论:这两个角是对顶角.它是假命题.反例,你书的左下角和右下角两
6、个角都是直角,相等,但不是对顶角.【总结升华】要判断一个命题是假命题,只要能够举出一个例子,使之具备命题的条件,而不具备命题的结论,就可以说明这一命题是假命题,这种例子通常称为反例.举一反三:【变式】(2013贵港)下列四个命题中,属于真命题的是().A若,则 B若ab,则ambmC两个等腰三角形必定相似 D位似图形一定是相似图形【答案】D类型二、公理、定理及证明3证明:等角的余角相等【思路点拨】如果题目中没有明确指出“条件”和“结论”,应先写出已知、求证、证明,如果需要的话并画出图形,再证明.【答案与解析】已知:12,1+390,2+4=90.求证:34.证明:1+3=90,2+4=90,(
7、已知)3=90-1,4=90-2.(等式的性质)1=2(已知),3=4(等量代换).【总结升华】“等角的余角相等”与“等角的补角相等”可以作为今后证明的依据此外,在等式或不等式中,一个量可以用它的等量来代替,简称为“等量代换”.举一反三:【变式】“垂线段最短”是( ).A定义 B定理 C公理 D不是命题【答案】B类型三、平行线的判定定理4.如图所示,由(1)13,(2)BADDCB,可以判定哪两条直线平行 【思路点拨】试着将复杂的图形分解成“基本图形”【答案与解析】解:(1)由13,可判定ADBC(内错角相等,两直线平行);(2)由BADDCB,13得:2BAD1DCB34(等式性质),即24
8、ABCD(内错角相等,两直线平行)综上,由(1)(2)可判定:ADBC,ABCD.【总结升华】本题探索结论的过程采用了“由因索果”的方法即在条件下探索由这些条件可推导出哪些结论,再由这些结论推导出新的结论,直到得出结果举一反三:【变式1】如图,下列条件中,不能判断直线的是( ).A13B23C45D2+41800【答案】B【高清课堂:平行线及判定 例1】【变式2】已知,如图,BE平分ABC,CF平分BCD,1=2,求证:AB/CD【答案】 1=2 21=22 ,即ABCBCD AB/CD (内错角相等,两直线平行)5.(2015日照期末)如图,ABCD,AE平分BAD,CD与AE相交于F,CF
9、E=E求证:ADBC【答案与解析】证明:AE平分BAD,1=2,ABCD,CFE=E,1=CFE=E,2=E,ADBC【总结升华】主要考查角平分线的性质以及平行线的判定定理【高清课堂:平行线及判定 例5】举一反三:【变式1】已知,如图,EFEG,GMEG,1=2,AB与CD平行吗?请说明理由【答案】解:ABCD理由如下:如图: EFEG,GMEG (已知), FEQMGE90(垂直的定义) 又 12(已知), FEQ -1MGE -2 (等式性质), 即34 ABCD (同位角相等,两直线平行)【变式2】(2015宁城)如图,下列能判定ABCD的条件有()个(1)B+BCD=180;(2)1=2;(3)3=4;(4)B=5A1B2C3D4【答案】解:(1)利用同旁内角互补判定两直线平行,故(1)正确;(2)利用内错角相等判定两直线平行,1=2,ADBC,而不能判定ABCD,故(2)错误;(3)利用内错角相等判定两直线平行,故(3)正确;(4)利用同位角相等判定两直线平行,故(4)正确正确的为(1)、(3)、(4),共3个;故选:C学魁网