1、第六单元 圆第二十四课时 圆的基本性质基础达标训练1. (2017兰州)如图,在O中,点D在O上,CDB25,则AOB()A. 45 B. 50 C. 55 D. 60 第1题图 第2题图2. (2017长郡教育集团二模)如图,A、D是O上的两个点,BC是直径若D32,则OAC()A. 64 B. 55 C. 72 D. 583. (2017泸州)如图,AB是O的直径,弦CDAB于点E,若AB8,AE1,则弦CD的长是()A. B. 2 C. 6 D. 8 第3题图 第4题图4. (2017周南中学一模)如图,O是ABC的外接圆,AOB60,ABAC2,则弦BC的长为()A. B. 3 C.
2、2 D. 45. (2017宜昌)如图,四边形ABCD内接于O,AC平分BAD,则下列结论正确的是()A. ABAD B. BCCDC. D. BCADCA 第5题图 第6题图6. (2017广州)如图,在O中,AB是直径,CD是弦,ABCD,垂足为E,连接CO,AD,BAD20,则下列说法中正确的是()A. AD2OB B. CEEOC. OCE40 D. BOC2BAD7. (2017广安)如图,AB是O的直径,且经过弦CD的中点H,已知cosCDB,BD5,则OH的长度为()A. B. C. 1 D. 第7题图 第8题图8. (2017金华)如图,在半径为13 cm的圆形铁片上切下一块高
3、为8 cm的弓形铁片,则弓形弦AB的长为()A. 10 cm B. 16 cm C. 24 cm D. 26 cm9. (2017重庆B卷)如图,OA,OC是O的半径,点B在O上,连接AB,BC. 若ABC40,则AOC_度 第9题图 第10题图10. (2017青竹湖湘一二模)如图,A,B,C三点都在O上,点D是AB延长线上一点,AOC140,则CBD_度11. (2017大连)如图,在O中,弦AB8 cm,OCAB,垂足为C,OC3 cm,则O的半径为_cm. 第11题图 第12题图12. (2017长沙中考模拟卷三)如图,O的半径为4,ABC是O的内接三角形,连接OB、OC. 若BAC与
4、BOC互补,则弦BC的长为_13. (8分)(2017麓山国际实验学校一模)如图,在O中,直径CD弦AB于E,AMBC于M,交CD于N,连接AD. (1)求证:ADAN;(2)若AB4,ON1,求O的半径第13题图能力提升训练1. (2017麓山国际实验学校三模)在半径等于5 cm的圆内有长为5 cm的弦,则此弦所对的圆周角为()A. 120 B. 30或120C. 60 D. 60或1202. (2017长沙中考模拟卷四)如图,点D(0,3)、O(0,0),C(4,0)在A上,BD是A的一条弦,则sinOBD的值为()A. B. C. D. 第2题图 第3题图3. (2017云南)如图,B、
5、C是A上的两点,AB的垂直平分线与A交于E、F两点,与线段AC交于D点,若BFC20,则DBC()A. 30 B. 29 C. 28 D. 204. (人教九上P122第(3)题改编)如图,PA、PB分别与O相切于A、B两点,若P80,则C()A. 50 B. 60 C. 70 D. 80 第4题图 第5题图5. (2017荆州)如图,A、B、C是O上的三点,且四边形OABC是菱形若点D是圆上异于A、B、C的另一点,则ADC的度数是_6. (9分)已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过D点的直线交AC于E点,交AB于F点,且AEF为等边三角形(1)求证:DFB是等
6、腰三角形;(2)若DAAF,求证:CFAB. 第6题图拓展培优训练1. (10分)如图,已知AB为O的直径,C 为圆周上一点,D为线段OB内一点(不是端点),满足CDAB,DECO,垂足为E,若CE10,且AD与DB的长均为正整数,求线段AD的长第1题图答案1. B【解析】如解图,连接OC.BOC和CDB分别为所对的圆心角和圆周角,BOC2CDB50,AOBBOC50. 第1题解图2. D【解析】BC是直径,D32,BD32,BAC90.OAOB,BAOB32,OACBACBAO903258.3.B【解析】连接OC,则OC4,OE3,在RtOCE中,CE.ABCD,CD2CE2. 第3题解图4
7、. C【解析】根据圆周角定理可知:CAOB30,在等腰三角形ABC中,BCACcos302,BC2.5. B【解析】AC平分BAD,BACDAC,BAC与CAD分别为与所对的圆周角,BCCD;B与D不一定相等,BBCABAC180,DDCADAC180,BCA与DCA不一定相等,与不一定相等,AB与AD不一定相等6. D【解析】AB是O 的直径,AD是O 的非直径的弦,ADAB2OB,故A错误;如解图,连接OD,ABCD,CEO90,COEBOD2BAD 40,OCE50,COEOCE,CEEO,故B错误;由选项B知,OCE5040,故C错误;由选项B知,BOC2BAD,故D正确7. D【解析
8、】如解图,连接OD,AB是O的直径,点H是CD的中点,由垂径定理可知:ABCD,在RtBDH中,cosCDB,BD5,DH4,BH3,设OHx,则ODOBx3,在RtODH中,OD2OH2DH2,(x3)2x242,解得x,即OH.8. C【解析】设弓形高为CD,则DC的延长线过点O,且OCAB,半径为13,OBOD13,弓形高为8,CD8,在RtOBC中,根据勾股定理得OC2BC2OB2,BC12,由垂径定理得AB2BC24 cm.9. 8010. 70【解析】设点E是优弧(不与A,C重合)上的一点,连接AE、CE,AOC140,AEC70,ABC180AEC110,CBD70.11. 5【
9、解析】如解图,连接OA,由垂径定理可知ACBCAB4,在RtAOC中,AC4,OC3,则由勾股定理可得OA5,即O的半径为5 cm.12. 4【解析】如解图,作ODBC于点D.由题意可得,根据“同弧所对的圆心角等于圆周角的两倍”可得BOC2BAC,又BAC与BOC互补,BACBOC3BAC180,BAC60,BOC120,又OBOC4,OBCOCB30,BDBOcos3042.由垂径定理可得,BC2BD4.13. (1)证明:BAD与BCD是同弧所对的圆周角,BADBCD,AECD,AMBC,AMCAEDAEN90,ANECNM,BCDBAM,BAMBAD,在ANE与ADE中,ANEADE(A
10、SA),ADAN;(2)解:AB4,AECD,AE2,又ON1,设NEx,则OEx1,NEEDx,rODOEED2x1,连接AO,则AOOD2x1,在RtAOE中,AE2OE2AO2,AE2,OEx1,AO2x1,(2)2(x1)2(2x1)2,解得x2,r2x13,即O的半径为3.能力提升训练1. D【解析】如解图,连接OA,OB,在优弧上任取一点E,连接AE,BE,在劣弧上任取一点F,连接AF,BF,过O作ODAB,则D为AB的中点,AB5,ADBD,又OAOB5,ODAB,OD平分AOB,即AODBODAOB,在RtAOD中,sinAOD,AOD60,AOB120,又圆心角AOB与圆周角
11、AEB所对的弧都为,AEBAOB60,四边形AEBF为O的内接四边形,AFBAEB180,AFB180AEB120,则此弦所对的圆周角为60或120.2. D【解析】如解图,连接CD,在RtOCD中,OD3,OC4,根据勾股定理可得CD5,在RtOCD中,sinOCD.根据“同弧所对的圆周角相等”可得出OBDOCD,sinOBDsinOCD.3. A【解析】所对的圆周角是BFC,所对圆心角是A,BFC20,A2BFC40,EF是AB的垂直平分线,且点D在EF上,DBDA,ABDA40,ABAC,ABCACB70,DBCABCABD704030.4. A【解析】如解图,连接AO、BO,PA、PB
12、分别与O相切于A、B两点,OAPOBP90,又P80,AOB360909080100,由圆周角定理得CAOB50.5. 60或120【解析】当D为优弧上一点时,ADCAOCABC,ABCADC180,ABC120,ADC60;当D为劣弧上一点时,ADCABC120.综上,ADC60或120.6. 证明:(1)AB为圆O的直径,ACB90,AEF是等边三角形,EAFEFA60,在RtABC中,ABC30,FDBEFAABC30,FBDFDB,FBFD,DFB是等腰三角形;(2)设AFa,则ADa,AEEFa,如解图,连接OC,则AOC是等边三角形,由题意得,DFBF2a,DEDFEF2aa22a,CE1a,在RtADC中,DC,在RtDCE中,tanCDEtan30,解得:a12(舍去),a2,在等边AOC中,OA1,AFOA,则根据等边三角形的性质可得CFOA,即CFAB.拓展培优训练1. 解:如解图,连接AC,BC,则ACB90,又CDAB,DECO,RtCDERtCOD,RtACDRtCBD,CECOCD2,CD2ADBD,CECOADBD,设ADa,DBb,a,b为正整数,则CO,又CE10,10ab,整理得:(a5)(b5)25,ab,a5b50,得a525,b51;a30,AD30.