1、3.4二元一次方程组的应用第1课时 简单实际问题和行程问题【教学目标】 1让学生学会分析题中已知量与未知量的关系,列出相应的二元一次方程组 2使学生通过列方程组解决实际问题,提高学习数学的趣味性、现实性、科学性【重难点】 重点:根据题中的各个量的关系,准确列出方程组; 难点:借助列表,数与数之间的关系,分析出问题中所蕴涵的数量关系【知识要点】知识点一:列方程组解应用题的基本思想列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系. 一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要
2、统一;(3)方程两边的数值要相等.知识点二:列方程组解应用题中常用的基本等量关系行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。这类问题比较直观,画线段,用图便于理解与分析。其等量关系式是:两者的行程差开始时两者相距的路程;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。这类问题也比较直观,因而也画线段图帮助理解与分析。这类问题的等量关系是:双方所走的路程之和总路程。(3)航行问题:船在静水中的速度水速船的顺水速度; 船在静水中的速度水速船的逆水速度; 顺水速度逆水速度2水速。注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺
3、水航行、逆水航行问题类似。例1甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米? 思路点拨:画直线型示意图理解题意: (1)这里有两个未知数:汽车的行程;拖拉机的行程. (2)有两个等量关系: 相向而行:汽车行驶小时的路程拖拉机行驶小时的路程160千米; 同向而行:汽车行驶小时的路程拖拉机行驶小时的路程.解:设汽车的速度为每小时行千米,拖拉机的速度为每小时千米.根据题意,列方程组 解这个方程组,得:.答:汽车行驶
4、了165千米,拖拉机行驶了85千米.总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米? 【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。例2今年父亲的年龄是儿子的5倍,6年后父亲的年龄是儿子的3倍,求现在父亲和儿子的年龄各是多少? 思路点拨:解本题的关键是理解“6年后”这几个字的含义,即6年后父子俩都长了6岁。今年父亲的年龄是儿子的5倍,6年后父亲的年龄是儿子的3倍,根据这两个相等关系列方程。解:设现在父亲x岁,儿子y岁,根据题意得:, 答:父亲现在30岁,儿子6岁。总结升华:解决年龄问题,要注意一点:一个人的年龄变化(增大、减小)了,其他人也一样增大或减小,并且增大(或减小)的岁数是相同的(相同的时间内)。【变式】今年,小李的年龄是他爷爷的五分之一.小李发现,12年之后,他的年龄变成爷爷的三分之一.试求出今年小李的年龄.