收藏 分享(赏)

3.3 第1课时二元一次方程与二元一次方程组2.docx

上传人:a****2 文档编号:3286349 上传时间:2024-02-21 格式:DOCX 页数:6 大小:667.74KB
下载 相关 举报
3.3 第1课时二元一次方程与二元一次方程组2.docx_第1页
第1页 / 共6页
3.3 第1课时二元一次方程与二元一次方程组2.docx_第2页
第2页 / 共6页
3.3 第1课时二元一次方程与二元一次方程组2.docx_第3页
第3页 / 共6页
3.3 第1课时二元一次方程与二元一次方程组2.docx_第4页
第4页 / 共6页
3.3 第1课时二元一次方程与二元一次方程组2.docx_第5页
第5页 / 共6页
3.3 第1课时二元一次方程与二元一次方程组2.docx_第6页
第6页 / 共6页
亲,该文档总共6页,全部预览完了,如果喜欢就下载吧!
资源描述

1、3.3 二元一次方程组及其解法第1课时 二元一次方程与二元一次方程组一、学生起点分析学生的知识技能基础:学生在已学过一元一次方程,学生已经具备列一元一次方程解决实际问题的经验基础,为本节的学习已做好知识储备,估计学生应有能力经过自主探索和交流列出二元一次方程组,解决简单的实际问题.学生活动经验基础:本节所涉及的实际问题包括:老牛、小马驮包裹问题、公园的门票问题等,这些问题均为全体学生所熟悉的情境,容易被学生接受和理解,从而也容易建立相应的数学模型来解题.二、教学任务分析基于学生对一元一次方程理解的基础上,教科书从实际问题出发,通过引导学生经历自主探索和合作交流的活动,学习二元一次方程、二元一次

2、方程组及其解等基本概念.在学习过程中,要突出强调建模思想,展现方程是刻画现实世界的有效数学模型,是贯穿方程与方程组的一条主线. 为此,本节课的教学目标是: (1)理解二元一次方程(组)及其解的概念, 能判别一组数是否是二元一次方程(组)的解;(2)会根据实际问题列简单的二元一次方程或二元一次方程组;(3)通过加深对概念的理解,提高对“元”和“次”的认识,而且能够逐步培养类比分析和归纳概括的能力,了解变与不变的辩证统一的思想.本节课的教学重点是:(1)掌握二元一次方程及二元一次方程组的概念,理解它们解的含义;(2)判断一组数是不是某个二元一次方程组的解.本节课的教学难点是:从实际问题中抽象出二元

3、一次方程组的过程,体会方程的模型思想.三、教学过程设计本节课设计了四个教学环节:第一环节:情境引入;第二环节:新课讲解,练习提高;第三环节:课堂小结;第四环节:布置作业.第一环节:情境引入内容:(一) 情境1实物投影,并呈现问题:在一望无际的呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个.”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?请每个学习小组讨论(讨论2分钟,然后发言).教师注意引导学生设两个未知数

4、,从而得出二元一次方程.这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍, 得方程:.(二)情境2实物投影,并呈现问题:昨天,有8个人去红山公园玩,他们买门票共花了34元.每张成人票5元,每张儿童票3元.那么他们到底去了几个成人、几个儿童呢?同学们,你们能否用所学的方程知识解决呢?仍请每个学习小组讨论(讨论2分钟,然后发言),老师注意引导学生分析其中有几个未知量,如果分别设未知数,将得到什么样的关系式?这个问题由于涉及到有几个成年人和几个儿童两个未知数,我们设他

5、们中有x个成年人,有y个儿童,在题目的条件中,我们可以找到的等量关系为:成人人数儿童人数8,成人票款儿童票款34.由此我们可以得到方程和.在这个问题中,可能会有学生认为用一元一次方程也可以解答,我们要肯定学生的做法,并将学生的答案保留下来,放到第二节二元一次方程组解法的学习中去,让学生更有学习的好奇心与积极性.同时告诉学生在某些有两个等量关系的实际问题中,列二元一次方程组比列一元一次方程更快捷、清楚.目的:通过现实情景再现,让学生体会到方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识.设计效果:学生通过前面的情景引入,在老师的引导下,列出关注两个未知数的方程,为后续关于二元一次方程

6、的讨论提供了素材,同时,有趣的情境,也激发了学生学习的兴趣.第二环节:新课讲解,练习提高内容:(一) 二元一次方程概念的概括提请学生思考:上面所列方程有几个未知数?所含未知数的项的次数是多少?从而归纳出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1的方程.教师对概念进行解析,要求学生注意:这个定义有两个要求:含有两个未知数;所含未知数的项的最高次数是一次.再呈现一些关于二元一次方程概念的辨析题,进行巩固练习: 1.下列方程有哪些是二元一次方程:(1),(2),(3),(4),(5),(6).2.如果方程是二元一次方程,那么m ,n .(二)二元一次方程组概念的概括师提请学生

7、思考:上面的方程 中的x含义相同吗?y呢?(两个方程中x的表示老牛驮的包裹数,y表示小马的包裹数,x、y的含义分别相同.)由于x、y的含义分别相同,因而必同时满足和,我们把这两个方程用大括号联立起来,写成,从而得出二元一次方程组的概念:像这样共含有两个未知数的两个一次方程所组成的一组方程.如: 注意:在方程组中的各方程中的同一个字母必须表示同一个对象.再呈现一些辨析题,让学生进行巩固练习:判断下列方程组是否是二元一次方程组:(1) (2) (3) (4) (5) (6)(三)因承上面的情境,得出有关方程的解的概念1.适合方程吗?呢?呢?你还能找到其他x,y值适合方程吗?2. 适合方程吗?呢?3

8、.你能找到一组值x,y同时适合方程和吗?各小组合作完成,各同学分别代入验算,教师巡回参与小组活动,并帮助找到3题的结论.由学生回答上面3个问题,老师作出结论:适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的解.如x=6, y=2是方程x+ y =8的一个解,记作 ;同样,也是方程的一个解,同时 又是方程的一个解.二元一次方程组中各个方程的公共解,叫做二元一次方程组的解.例如,就是二元一次方程组的解.然后,同样呈现一些辨析性练习:(投影)1.下列四组数值中,哪些是二元一次方程的解?(A) (B) (C) (D)2.二元一次方程的解有: 3.二元一次方程组的解是( )(A) (B) (

9、C) (D)4.以为解的二元一次方程组是( )(A) (B) (C) (D)5.二元一次方程的正整数解为 .6.如果是的解,那么m ,n .7.写出一个以为解的二元一次方程组为 . (答案不唯一)目的:通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好巩固新知识.设计效果:通过本环节的讲解与训练,让学生对利用新知识解决一些简单问题有更加明确的认识,同时也尽量让学生明白知识点不是孤立的,需要前后联系,才能更好地处理一些新问题.第三环节:课堂小结内容:1.含有两未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解是一个互相关联的两个数值,它有无数个解.3.

10、含有两个未知数的两个二元一次方程组成的一组方程,叫做二元一次方程组,它的解是两个方程的公共解,是一组确定的值.目的:引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.设计效果:本环节虽然用时不多,却是必不可少的教学环节,对学生回顾与整理本节课的知识效果明显.第四环节:布置作业四 .教学设计反思1.本节课充分体现了从问题情景中抽象数学问题、使用各种数学语言表达问题、建立数学关系式、获得合理的解答、理解并掌握相应的数学知识与技能的有意义的这一变化学习过程.在教学中力求体现“问题情景建立数学模型解释、应用与拓展”的模式,使学生在自主探索和合

11、作交流的过程中建立二元一次方程的数学模型,学会逐步掌握基本的数学知识和方法,形成良好的数学思维习惯和应用意识,提高自己解决问题的能力,感受数学创造的乐趣,增进学好数学的信心,获得对数学较全面的体验和理解.2.通过情境引入,让同学们体会到了生活中的数学无处不在,激发了学生强烈的求知欲望,学生的反应非常积极踊跃,丰富了学生们的情感与态度.充分利用小组合作交流,让同学们自己找出方程中的等量关系,启发同学们自己说出各个定义的理解.在同学们合作做题的时候,老师进一步强调小组合作交流、合理分配时间会取得更好的效果.教学过程各环节紧紧相扣,整个教学过程逻辑思维清晰,问题与问题之间衔接紧密,每一步都为下一步做了很好的铺垫.3.这个案例主要针对中等生而设计,教师可根据学生学习能力再进行设计上的侧重.比如,学生学习能力较强,可在实际问题中抽象二元一次方程组的模型环节、课后的拓展环节增加适当的深层次的内容,以满足学生的学习需要.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题 > 2.29金太阳联考 > 2.29金太阳联考 > 更多高考新课联系:F8688333

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2