1、16.1二次根式第2课时 教学目标【知识与技能】理解并掌握二次根式的性质,正确区分=a(a0)与=a(a0),并利用它们进行化简和计算.【过程与方法】在探索二次根式性质的学习活动中,进一步增强学生的参与意识,培养学生的计算能力和解决问题的能力.【情感态度】通过创设问题情境,激发学生学习兴趣,培养学生主动探究意识和创新精神,形成良好的心理品质,促进身心健康发展.教学重难点【教学重点】=a(a0),=a(a0)及其应用.【教学难点】用探究的方法探索=a(a0)及=a(a0)的结论.课前准备无教学过程一、情境导入,初步认识试一试:请根据算术平方根填空,猜一猜:通过对上述问题的思考,你能猜想出(a0)
2、的结论是什么?说说你的理由.【教学说明】让学生通过具体实例所展示的特征,猜想出结果,然后再利用算术平方根的意义对所猜测结论进行分析,由感性认识到理性思考,培养学生利用代数语言进行推理的能力.二、思考探究,获取新知在学生相互交流的基础上可归纳出:=a(a0).进一步地,引导学生探究新的问题.探究(1)填空:(2)通过(1)的思考,你能确定(a0)的化简结果吗?说说你的理由.【教学说明】教师应尽力引导学生积极主动进行探究思考,让学生经历知识的发现与完善的过程,深化对所学知识的理解和记忆,最后师生共同完成对知识的归纳总结.【归纳结论】一般地,根据算术平方根的意义,有=a(a0).最后,教师给出代数式
3、的概念.代数式:用运算符号(加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子称为代数式.(代数式的定义只要求学生了解就行,不必深究.)三、典例精析,掌握新知例1 计算:(1)()2; (2)(2)2【教学说明】以上例1、例2可由学生自主完成,教师巡视,对有困难的学生及时予以指导,让每个学生都能得到发展.例3教师引导学生看懂数轴,结合数轴确定a、b的符号.四、运用新知,深化理解【教学说明】以上13题可试着让学生自主完成,第4题稍有难度,教师适时点拨.(2)本题中的两个二次根式都可以利用=|a|进行化简.然后再根据x2的这个范围,来判断x-2与1-2x的正负,最后化简掉绝对值符号.x2
4、,x-20,1-2x0.3.(1)原式=5-5+1=1(2)原式=7+492/7=7+14=21 (2)首先利用a2=|a|化简掉二次根号,再根据x的取值范围来判断绝对值中的代数式的正负,化掉绝对值的符号.五、师生互动,课堂小结1.本节知识可这样归纳:2.通过这节课的学习,你有哪些收获和体会?与同伴交流.课后作业1.布置作业:从教材“习题16.1”中选取.2.完成练习册中本课时练习.教学反思1.注意前后知识的联系,在复习旧知的过程中导入本节课的数学内容,按照由特殊到一般的规律,降低学生理解的难度.2.在总结二次根式的性质过程中,由学生经过观察、分析的过程,让学生在交流中体会成功.3.几个例题,旨在帮助学生对二次根式的性质的理解,在练习和作业中都增加了难度,主要给能力较好的学生提供更大的发展空间.5