1、2013年全国硕士研究生入学统一考试数学二试题一、选择题 18小题每小题4分,共32分设,当时, ( )(A)比高阶的无穷小 (B)比低阶的无穷小(C)与同阶但不等价无穷小 (D)与等价无穷小2已知是由方程确定,则( )(A)2 (B)1 (C)-1 (D)-2设,则( )()为的跳跃间断点 ()为的可去间断点()在连续但不可导 ()在可导设函数,且反常积分收敛,则( )(A) (B) (C) (D)设函数,其中可微,则( )(A) (B)(C) (D)6设是圆域的第象限的部分,记,则( )(A) (B) (C) (D)7设,均为阶矩阵,若,且可逆,则(A)矩阵C的行向量组与矩阵A的行向量组等
2、价(B)矩阵C的列向量组与矩阵A的列向量组等价(C)矩阵C的行向量组与矩阵B的行向量组等价(D)矩阵C的列向量组与矩阵B的列向量组等价8矩阵与矩阵相似的充分必要条件是(A) (B),为任意常数(C) (D),为任意常数二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9 10设函数,则的反函数在处的导数 11设封闭曲线L的极坐标方程为为参数,则L所围成的平面图形的面积为 12曲线上对应于处的法线方程为 13已知是某个二阶常系数线性微分方程三个解,则满足方程的解为 14设是三阶非零矩阵,为其行列式,为元素的代数余子式,且满足,则= 三、解答题15(本题满分10分)当时,与
3、是等价无穷小,求常数16(本题满分10分)设D是由曲线,直线及轴所转成的平面图形,分别是D绕轴和轴旋转一周所形成的立体的体积,若,求的值17(本题满分10分)设平面区域D是由曲线所围成,求18(本题满分10分)设奇函数在上具有二阶导数,且,证明:(1)存在,使得;(2)存在,使得19(本题满分10分)求曲线上的点到坐标原点的最长距离和最短距离20(本题满分11)设函数求的最小值;设数列满足,证明极限存在,并求此极限21(本题满分11)设曲线L的方程为(1)求L的弧长(2)设D是由曲线L,直线及轴所围成的平面图形,求D的形心的横坐标22本题满分11分)设,问当为何值时,存在矩阵C,使得,并求出所有矩阵C23(本题满分11分)设二次型记(1)证明二次型对应的矩阵为 ;(2)若正交且为单位向量,证明在正交变换下的标准形为 13