收藏 分享(赏)

专题10 圆锥曲线-备战2019年高考数学(理)之纠错笔记系列(原卷版).doc

上传人:a****2 文档编号:3304946 上传时间:2024-02-27 格式:DOC 页数:40 大小:9.95MB
下载 相关 举报
专题10 圆锥曲线-备战2019年高考数学(理)之纠错笔记系列(原卷版).doc_第1页
第1页 / 共40页
专题10 圆锥曲线-备战2019年高考数学(理)之纠错笔记系列(原卷版).doc_第2页
第2页 / 共40页
专题10 圆锥曲线-备战2019年高考数学(理)之纠错笔记系列(原卷版).doc_第3页
第3页 / 共40页
专题10 圆锥曲线-备战2019年高考数学(理)之纠错笔记系列(原卷版).doc_第4页
第4页 / 共40页
专题10 圆锥曲线-备战2019年高考数学(理)之纠错笔记系列(原卷版).doc_第5页
第5页 / 共40页
专题10 圆锥曲线-备战2019年高考数学(理)之纠错笔记系列(原卷版).doc_第6页
第6页 / 共40页
亲,该文档总共40页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、易错点1 混淆“轨迹”与“轨迹方程”如图,已知点,直线,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且,求动点P的轨迹【错解】设点P(x,y),则Q(1,y),由,得(x1,0)(2,y)(x1,y)(2,y),化简得y24x【错因分析】错解中求得的是动点的轨迹方程,而不是轨迹,混淆了“轨迹”与“轨迹方程”的区别【试题解析】设点P(x,y),则Q(1,y),由,得(x1,0)(2,y)(x1,y)(2,y),化简得y24x故动点P的轨迹为焦点坐标为(1,0)的抛物线【参考答案】动点P的轨迹为焦点坐标为(1,0)的抛物线1求轨迹方程时,若题设条件中无坐标系,则需要先建立坐标系,建系时,尽量

2、取已知的相互垂直的直线为坐标轴,或利用图形的对称性选轴,或使尽可能多的点落在轴上.求轨迹方程的方法有:(1)直接法:直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性(2)定义法:求轨迹方程时,若动点与定点、定直线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可直接根据定义先确定轨迹类型,再写出其方程(3)相关点法:动点所满足的条件不易得出或转化为等式,但形成轨迹的动点却随另一动点的运动而有规律地运动,而且动点Q的轨迹方程为给定的或容易求得的,则可先将,表示成关于x,y的式子,再代入Q的轨迹方程整理化简即得动点P的轨迹方程(4)参数法:若动点坐标之间的关系

3、不易直接找到,且无法判断动点的轨迹,也没有明显的相关动点可用,但较易发现(或经分析可发现)这个动点的运动受到另一个变量的制约,即动点中的x,y分别随另一变量的变化而变化,我们可称这个变量为参数,建立轨迹的参数方程,这种求轨迹方程的方法叫做参数法.2求轨迹方程与求轨迹是有区别的,若是求轨迹,则不仅要求出方程,而且还要说明和讨论所求轨迹是什么样的图形,即说出图形的形状、位置等1已知点P(2,2),圆C:,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点(1)求M的轨迹方程;(2)当|OP|OM|时,求l的方程及的面积【答案】(1);(2)【解析】(1)圆C的方程可化为,所以圆

4、心为C(0,4),半径为4设M(x,y),则,由题设知,故,即由于点P在圆C的内部,所以M的轨迹方程是(2)由(1)可知M的轨迹是以点N(1,3)为圆心,为半径的圆由于|OP|OM|,故O在线段PM的垂直平分线上,又P在圆N上,从而ONPM因为ON的斜率为3,所以直线l的斜率为,故直线l的方程为又|OM|OP|,点O到直线l的距离为,|PM|,所以的面积为易错点2 求轨迹方程时忽略变量的取值范围已知曲线C:y和直线l:ykx(k0),若C与l有两个交点A和B,求线段AB中点的轨迹方程.【错解】依题意,由分别消去x、y得,(k21)x22x20,(k21)y22ky2k20.设AB的中点为P(x

5、,y),则在中分别有,故线段AB中点的轨迹方程为.【错因分析】消元过程中,由于两边平方,扩大了变量y的允许范围,故应对x,y加以限制【试题解析】依题意,由,分别消去x、y得,(k21)x22x20,(k21)y22ky2k20.设AB的中点为P(x,y),则在中分别有又对应满足,解得k2,y.所以所求轨迹方程是x2y2x0(x2,y)【参考答案】轨迹方程是x2y2x0(x2,y).1一般地,在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点那么,这

6、个方程叫做曲线的方程;这条曲线叫做方程的曲线2要注意有的轨迹问题包含一定的隐含条件,由曲线和方程的概念可知,在求曲线时一定要注意它的“完备性”和“纯粹性”,即轨迹若是曲线的一部分,应对方程注明x的取值范围,或同时注明x,y的取值范围.2已知的三边a、b、c(abc)成等差数列,A、C两点的坐标分别是(1,0)、(1,0),求顶点B的轨迹方程.【答案】1(2xc,解得x0.又点B不在x轴上,x2.故所求的轨迹方程为1(2xbc,使变量x的范围扩大,从而导致错误另外,注意当点B在x轴上时,A、B、C三点不能构成三角形 易错点3 忽略椭圆定义中的限制条件若方程表示椭圆,则实数k的取值范围为_【错解】

7、由,可得,所以实数k的取值范围为(6,8)【错因分析】忽略了椭圆标准方程中ab0这一限制条件,当ab0时表示的是圆的方程【试题解析】由,可得且,所以实数k的取值范围为(6,7)(7,8)【方法点睛】准确理解椭圆的定义,明确椭圆定义中的限制条件,才能减少解题过程中的失误,从而保证解题的正确性【参考答案】(6,7)(7,8)平面上到两定点的距离的和为常数(大于两定点之间的距离)的点的轨迹是椭圆. 这两个定点叫做椭圆的焦点,两个定点之间的距离叫做椭圆的焦距,记作.定义式:.要注意,该常数必须大于两定点之间的距离,才能构成椭圆.3已知F1,F2为两定点,|F1F2|8,动点M满足|MF1|MF2|8,

8、则动点M的轨迹是A椭圆B直线C圆D线段 【答案】D【解析】虽然动点M到两个定点F1,F2的距离为常数8,但由于这个常数等于|F1F2|,故动点M的轨迹是线段F1F2,故选D平面上到两定点的距离的和为常数(大于两定点之间的距离)的点的轨迹是椭圆.若忽略了椭圆定义中|F1F2|2a这一隐含条件,就会错误地得出点M的轨迹是椭圆.易错点4 忽略对椭圆焦点位置的讨论已知椭圆的标准方程为,并且焦距为8,则实数k的值为_【错解1】因为2c8,所以c4,由椭圆的标准方程知a236,b2k2,a2b2c2,所以36k242,即k220,又k0,故【错解2】因为2c8,所以c4,由椭圆的标准方程知a2k2,b23

9、6,a2b2c2,所以k23642,即k252,又k0,故【错因分析】当椭圆的焦点位置不确定时,求椭圆的标准方程需要进行分类讨论,而错解中忽略了对椭圆的焦点位置的讨论,从而导致错误【试题解析】因为2c8,所以c4,当焦点在x轴上时,由椭圆的标准方程知a236,b2k2,a2b2c2,所以36k242,即k220,又k0,故;当焦点在y轴上时,由椭圆的标准方程知a2k2,b236,a2b2c2,所以k23642,即k252,又k0,故综上,或【方法点睛】涉及椭圆方程的问题,如果没有指明椭圆焦点所在的位置,一般都会有两种可能的情形,不能顺着思维定式,想当然地认为焦点在x轴上或y轴上去求解【参考答案

10、】或1解决已知椭圆的焦点位置求方程中的参数问题,应注意结合焦点位置与椭圆方程形式的对应关系求解.对于方程,表示焦点在x轴上的椭圆且;表示焦点在y轴上的椭圆且;表示椭圆且对于形如:Ax2By21(其中A0,B0,AB)的椭圆的方程,其包含焦点在x轴上和在y轴上两种情况,当BA时,表示焦点在x轴上的椭圆;当BA时,表示焦点在y轴上的椭圆2求椭圆的方程有两种方法: (1)定义法.根据椭圆的定义,确定a2,b2的值,结合焦点位置可写出椭圆方程. (2)待定系数法.这种方法是求椭圆的方程的常用方法,其一般步骤是: 第一步,做判断.根据条件判断椭圆的焦点在x轴上,还是在y轴上,还是两个坐标轴都有可能(这时

11、需要分类讨论). 第二步,设方程.根据上述判断设方程为或.第三步,找关系.根据已知条件,建立关于的方程组(注意椭圆中固有的等式关系).第四步,得椭圆方程.解方程组,将解代入所设方程,即为所求.3用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,需要分焦点在x轴上和在y轴上两种情况讨论,也可设椭圆的方程为Ax2By21(其中A0,B0,AB).求椭圆的标准方程的方法可以采用待定系数法,此时要注意根据焦点的位置选择椭圆的标准方程;也可以利用椭圆的定义及焦点位置或点的坐标确定椭圆的标准方程.4已知,则该椭圆的标准方程为AB或CD或【答案】D【解析】由题意可知,当焦点在x轴上时,

12、椭圆方程为;当焦点在y轴上时,椭圆方程为故选D本题在求解时容易忽略焦点的位置,而默认了椭圆的焦点在x轴上,从而求出椭圆的标准方程为1.为了避免讨论,也可以如下方法设椭圆方程:与椭圆有相同焦点的椭圆方程可设为且,与椭圆有相同离心率的椭圆方程可设为,焦点在x轴上或,焦点在y轴上易错点5 忽略椭圆的范围设椭圆的中心是坐标原点,长轴在x轴上,离心率,已知点到椭圆的最远距离为,求椭圆的标准方程【错解】由题意可设椭圆的标准方程为,则,故,即设椭圆上的点到点P的距离为d,则,所以当时,取得最大值,从而d取得最大值,所以,解得,故所求椭圆的标准方程为【错因分析】错解中“当时,取得最大值”这一步的推理是错误的,

13、没有考虑椭圆方程中y的取值范围,事实上,由于点在椭圆上,所以,因此在求的最大值时,应分类讨论【试题解析】由题意可设椭圆的标准方程为,则,故,即设椭圆上的点到点P的距离为d,则,若,则当时,取得最大值,从而d取得最大值,于是,解得,与矛盾,故,所以当时,取得最大值,从而d取得最大值,所以,解得,故所求椭圆的标准方程为【方法点睛】准确把握椭圆定义中的限制条件,是正确解题的前提,在求解时,应做到步步有依据,这样才能避免出错【参考答案】.1椭圆的范围就是方程中变量x,y的范围,由得,则;,则.故椭圆落在直线x=a,y=b围成的矩形内,因此用描点法画椭圆的图形时就可以不取“矩形”范围以外的点了.同时,在

14、处理椭圆的一些参数或最值问题时要注意x,y的取值范围.2设椭圆上任意一点,则当时,有最小值b,P点在短轴端点处;当时,有最大值a,P点在长轴端点处3(1)解决椭圆1(ab0)中的范围问题常用的关系有:axa,byb;离心率0e0或m0时,准线方程为x,由条件知1()3,所以m8.此时抛物线方程为y28x;当m0时,准线方程为x,由条件知13,所以m16,此时抛物线方程为y216x.所以所求抛物线方程为y28x或y216x.【参考答案】y28x或y216x.1抛物线的四种标准方程与对应图形如下表所示:图 形标准方程焦点坐标准线方程注:抛物线标准方程中参数p的几何意义是:抛物线的焦点到准线的距离,

15、所以p的值永远大于02求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点的位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数,只需一个条件就可以确定抛物线的标准方程.用待定系数法求抛物线标准方程的步骤:若无法确定抛物线的位置,则需分类讨论.特别地,已知抛物线上一点的坐标,一般有两种标准方程.11顶点在原点,且过点的抛物线的标准方程是ABC或D或【答案】C【解析】当焦点在轴上时,设方程为,将代入得,;当焦点在轴上时,设方程为,将代入得,故选C本题若只考虑焦点在x轴的负半轴上的情况,而忽略了焦点也可能在y轴的正半轴上的情况,则会出现漏解易错点12 忽略直线与抛物线有一个公

16、共点的特殊情况 求过定点,且与抛物线只有一个公共点的直线l的方程【错解】当直线l的斜率不存在时,显然不满足题意当直线l的斜率存在时,设直线l的方程为,由消去x,得,则,解得故所求直线l的方程为或【错因分析】错解中忽略了与抛物线的对称轴平行的直线与抛物线有一个公共点,故产生漏解【试题解析】当直线l的斜率不存在时,显然不满足题意当直线l的斜率存在时,设l:,当时,直线l的方程为,此时直线l与抛物线只有一个公共点当时,与抛物线方程联立消去x,得,则,解得,此时直线l的方程为或综上,直线l的方程为或或【参考答案】直线l的方程为或或直线与抛物线公共点的个数等价于方程组的解的个数(1)若,则当时,直线和抛

17、物线相交,有两个公共点;当时,直线和抛物线相切,有一个公共点;当时,直线和抛物线相离,无公共点(2)若,则直线与抛物线相交,有一个公共点特别地,当直线l的斜率不存在时,设,则当时,直线l与抛物线相交,有两个公共点;当时,直线l与抛物线相切,有一个公共点;当时,直线l与抛物线相离,无公共点12“直线与抛物线相切”是“直线与抛物线只有一个公共点”的A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【答案】A【解析】“直线与抛物线相切”可得“直线与抛物线只有一个公共点”,“直线与抛物线只有一个公共点”时,直线可能与对称轴平行,此时不相切,故“直线与抛物线相切”是“直线与抛物线只有一个公

18、共点”的充分不必要条件故选A本题易忽略直线平行于抛物线的对称轴时,直线与抛物线也只有一个交点,而漏掉k=0.一、曲线与方程1求曲线方程的步骤求曲线的方程,一般有下面几个步骤:(1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标; (2)写出适合条件p的点M的集合;(3)用坐标表示条件p(M),列出方程;(4)化方程为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上 一般地,化简前后方程的解集是相同的,步骤(5)可以省略不写若遇到某些点虽适合方程,但不在曲线上时,可通过限制方程中x,y的取值范围予以剔除另外,也可以根据情况省略步骤(2),直接列出曲线方程2两曲线的交

19、点(1)由曲线方程的定义可知,两条曲线交点的坐标应该是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;反过来,方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点(2)两条曲线有交点的充要条件是它们的方程所组成的方程组有实数解可见,求曲线的交点问题,就是求由它们的方程所组成的方程组的实数解问题.二、椭圆1椭圆的定义平面上到两定点的距离的和为常数(大于两定点之间的距离)的点的轨迹是椭圆. 这两个定点叫做椭圆的焦点,两个定点之间的距离叫做椭圆的焦距,记作.定义式:.要注意,该常数必须大于两定点之间的距离,才能构成椭圆.2椭圆的标准方程焦点在轴上,;焦点在轴上,.说明:要注

20、意根据焦点的位置选择椭圆方程的标准形式,知道之间的大小关系和等量关系:.3椭圆的几何性质标准方程(ab0)(ab0)图形范围,对称性对称轴:x轴、y轴;对称中心:原点焦点左焦点F1 (c,0),右焦点F2 (c,0)下焦点F1 (0,c),上焦点F2 (0,c)顶点 轴线段A1A2,B1B2分别是椭圆的长轴和短轴;长轴长|A1A2|2a,短轴长|B1B2|2b,长半轴长为a,短半轴长为b离心率e椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围)有两种方法: (1)求出a,c,代入公式.(2)只需要根据一个条件得到关于的齐次式,结合转化为a,c的齐次式,然后等式(不等式)两

21、边分别除以a或a2转化为关于e或e2的方程(不等式),解方程(不等式)即可得e(e的取值范围).三、双曲线1 双曲线的定义(1)定义:平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|且大于零)的点的轨迹叫做双曲线这两个定点叫做双曲线的焦点,两个焦点间的距离叫做双曲线的焦距(2)符号语言:.(3)当时,曲线仅表示焦点所对应的双曲线的一支;当时,曲线仅表示焦点所对应的双曲线的一支;当时,轨迹为分别以F1,F2为端点的两条射线;当时,动点轨迹不存在2双曲线的标准方程(1)焦点在x轴上的双曲线的标准方程为(a0,b0),焦点分别为F1(c,0),F2(c,0),焦距为2c,且.(

22、2)焦点在y轴上的双曲线的标准方程为(a0,b0),焦点分别为F1(0,c),F2(0,c),焦距为2c,且3双曲线的几何性质标准方程(a0,b0)(a0,b0)图形范围,对称性对称轴:x轴、y轴;对称中心:原点焦点左焦点F1(c,0),右焦点F2(c,0)下焦点F1(0,c),上焦点F2(0,c)顶点轴线段A1A2是双曲线的实轴,线段B1B2是双曲线的虚轴;实轴长|A1A2|2a,虚轴长|B1B2|2b渐近线离心率e 在解决双曲线中与焦点三角形有关的问题时,首先要注意定义中的条件的应用;其次是要利用余弦定理、勾股定理等知识进行运算,在运算中要注意整体思想和一些变形技巧的应用4等轴双曲线实轴和

23、虚轴等长的双曲线叫做等轴双曲线等轴双曲线具有以下性质:(1)方程形式为;(2)渐近线方程为,它们互相垂直,并且平分双曲线实轴和虚轴所成的角;(3)实轴长和虚轴长都等于,离心率1求双曲线的离心率一般有两种方法:(1)由条件寻找满足的等式或不等式,一般利用双曲线中的关系将双曲线的离心率公式变形,即.(2)根据条件列含的齐次方程,利用双曲线的离心率公式转化为含或的方程,求解可得,注意根据双曲线离心率的范围对解进行取舍.2求解双曲线的离心率的范围,一般是根据条件,结合和,得到关于的不等式,求解即得.注意区分双曲线离心率的范围,椭圆离心率的范围.另外,在建立关于的不等式时,注意双曲线上的点到焦点的距离的

24、最值的应用.四、抛物线1抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F) 距离相等的点的轨迹叫做抛物线点F叫做抛物线的焦点,直线l叫做抛物线的准线抛物线关于过焦点F与准线垂直的直线对称,这条直线叫抛物线的对称轴,简称抛物线的轴注意:直线l不经过点F,若l经过F点,则轨迹为过定点F且垂直于定直线l的一条直线2抛物线的标准方程(1)顶点在坐标原点,焦点在x轴正半轴上的抛物线的标准方程为;(2)顶点在坐标原点,焦点在x轴负半轴上的抛物线的标准方程为;(3)顶点在坐标原点,焦点在y轴正半轴上的抛物线的标准方程为;(4)顶点在坐标原点,焦点在y轴负半轴上的抛物线的标准方程为.注意:抛物线标准

25、方程中参数p的几何意义是抛物线的焦点到准线的距离,所以p的值永远大于0,当抛物线标准方程中一次项的系数为负值时,不要出现p0的错误.3抛物线的几何性质标准方程图 形几何性质范 围 对称性关于x轴对称关于x轴对称关于y轴对称关于y轴对称焦点准线方程顶 点坐标原点(0,0)离心率4抛物线的焦半径抛物线上任意一点与抛物线焦点F的连线段,叫做抛物线的焦半径根据抛物线的定义可得焦半径公式如下表:抛物线方程焦半径公式5抛物线的焦点弦抛物线的焦点弦即过焦点F的直线与抛物线所成的相交弦焦点弦公式既可以运用两次焦半径公式得到,也可以由数形结合的方法求出直线与抛物线的两交点坐标,再利用两点间的距离公式得到,设AB

26、为焦点弦,则抛物线方程焦点弦公式其中,通过抛物线的焦点作垂直于对称轴而交抛物线于A,B两点的线段AB,称为抛物线的通径对于抛物线,由,可得,故抛物线的通径长为2p1抛物线的离心率e1,体现了抛物线上的点到焦点的距离等于到准线的距离,因此,涉及抛物线的焦半径、焦点弦的问题,可以优先考虑利用抛物线的定义将点到焦点的距离转化为点到准线的距离,即或,使问题简化2有关抛物线上一点M到抛物线焦点F和到已知点E(E在抛物线内)的距离之和的最小值问题,可依据抛物线的图形,过点E作准线l的垂线,其与抛物线的交点到抛物线焦点F和到已知点E的距离之和是最小值.五、直线与圆锥曲线的位置关系1曲线的交点在平面直角坐标系

27、xOy中,给定两条曲线,已知它们的方程为,求曲线的交点坐标,即求方程组的实数解.方程组有几组实数解,这两条曲线就有几个交点.若方程组无实数解,则这两条曲线没有交点.2直线与圆锥曲线的位置关系直线与圆锥曲线相交时,直线与椭圆有两个公共点,与双曲线、抛物线有一个或两个公共点.(1)直线与椭圆有两个交点相交;直线与椭圆有一个交点相切;直线与椭圆没有交点相离.(2)直线与双曲线有两个交点相交.当直线与双曲线只有一个公共点时,除了直线与双曲线相切外,还有可能是直线与双曲线相交,此时直线与双曲线的渐近线平行.直线与双曲线没有交点相离.(3)直线与抛物线有两个交点相交.当直线与抛物线只有一个公共点时,除了直

28、线与抛物线相切外,还有可能是直线与抛物线相交,此时直线与抛物线的对称轴平行或重合.直线与抛物线没有交点相离.3弦长的求解(1)当弦的两端点坐标易求时,可直接利用两点间的距离公式求解;(2)当直线的斜率存在时,斜率为k的直线l与圆锥曲线C相交于两个不同的点,则弦长.(3)当弦过焦点时,可结合焦半径公式求解弦长.4中点弦问题(1)AB为椭圆的弦,弦中点M(x0,y0),则AB所在直线的斜率为,弦AB的斜率与弦中点M和椭圆中心O的连线的斜率之积为定值.(2)AB为双曲线的弦,弦中点M(x0,y0),则AB所在直线的斜率为,弦AB的斜率与弦中点M和双曲线中心O的连线的斜率之积为定值.(3)在抛物线中,

29、以M(x0,y0) 为中点的弦所在直线的斜率.1(2018新课标全国)已知椭圆的一个焦点为,则的离心率为ABCD2(2018浙江)双曲线的焦点坐标是A(,0),(,0)B(2,0),(2,0)C(0,),(0,)D(0,2),(0,2)3(2018新课标全国理)双曲线的离心率为,则其渐近线方程为ABCD4“”是“曲线=为双曲线”的A充分不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件5顶点在坐标原点,对称轴为坐标轴,又过点的抛物线方程是ABC或D或6已知点及抛物线上一动点,则的最小值为ABCD7已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线方程为ABCD8椭圆的左,右焦点分别为,弦过,若的内切圆周长为,两点的坐标分别为,则值为ABCD

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题 > 2.29金太阳联考 > 2.29金太阳联考 > 更多高考新课联系:F8688333

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2