1、微专题二数列通项公式的常用求法一、累加法、累乘法例1 已知数列an满足an1an23n1,a13,则数列an的通项公式为_答案an3nn1 解析由an1an23n1,得a2a12311,a3a22321,a4a32331,anan123n11,累加可得ana12(31323n1)(n1),又a13,an2n23nn1(n1时也成立)例2 设数列an是首项为1的正项数列,且(n1)anaan1an0(n1,2,3,),则它的通项公式是an_.答案解析原递推式可化为:(n1)an1nan(an1an)0,an1an0,则,累乘可得,又a11,an(n1时也成立)跟踪训练1 (1)在数列an中,a1
2、3,an1an,则数列an的通项公式为an_.答案4解析原递推式可化为an1an,则a2a1,a3a2,a4a3,anan1,累加得ana11.故an4(n1时也成立)(2)在数列an中,a11,an12nan,则an_.答案解析a11,a22a1,a322a2,an2n1an1,累乘得an222232n1,当n1时也成立,故an.二、换元法例3 已知数列an,其中a1,a2,且当n3时,anan1(an1an2),求通项公式an.解设bn1anan1,原递推式可化为bn1bn2,bn是一个等比数列,b1a2a1,公比为.bnb1n1n1,故anan1n,an1an2n1,a3a23,a2a1
3、2,用累加法得ann,当n1时也成立跟踪训练2 已知数列an中,a11,a22,当n3时,an2an1an21,求通项公式an.解当n3时,(anan1)(an1an2)1,令bn1anan1,bn1bn21,bn是等差数列,其中b1a2a11,公差为1,bnn,b1b2bn1a2a1a3a2anan1an1,an1n(n1),an(n1时也成立)三、构造等差数列求通项例4 已知数列an满足an13an23n1,a13,求数列an的通项公式解an13an23n1,两边同除以3n1,得2,是以1为首项,以2为公差的等差数列,1(n1)22n1,an(2n1)3n.例5 若数列an中,a12且an
4、(n2),求它的通项公式an.解将an两边平方整理,得aa3.数列a是以a4为首项,3为公差的等差数列故aa(n1)33n1.因为an0,所以an.例6 已知数列an中,a11,且当n2时,an,求通项公式an.解将an两边取倒数,得2,这说明是一个等差数列,首项是1,公差为2,所以1(n1)22n1,即an.跟踪训练3 (1)已知数列an满足an13an3n,且a11.证明:数列是等差数列;求数列an的通项公式证明由an13an3n,两边同时除以3n1,得,即.由等差数列的定义知,数列是以为首项,为公差的等差数列解由(1)知(n1),故ann3n1,nN*.(2)已知数列an中,a11,an
5、1ananan1(n2,nN*),则a10_.答案解析易知an0,数列an满足an1ananan1(n2,nN*),1(n2,nN*),故数列是等差数列,且公差为1,首项为1,1910,a10.四、构造等比数列求通项例7 已知数列an满足a11,an13an2,求数列an的通项公式解由an13an2,可得an113(an1),又a112,an1是以2为首项,以3为公比的等比数列,an123n1,an23n11.例8 在数列an中,a11,an12an43n1,求通项公式an.解原递推式可化为an13n2(an3n1),比较系数得4,式为:an143n2(an43n1)则数列an43n1是一个等
6、比数列,其首项为a143115,公比是2.an43n152n1,即an43n152n1.例9 数列an满足a12,an1a(an0,nN*),则an_.答案解析因为数列an满足a12,an1a(an0,nN*),所以log2an12log2an,即2.又a12,所以log2a1log221.故数列log2an是首项为1,公比为2的等比数列所以log2an2n1,即an.跟踪训练4 (1)若数列an中,a13且an1a(n是正整数),则它的通项公式是an_.答案解析由题意知an0,将an1a两边取对数,得lg an12lg an,即2,又lg a1lg 3,所以数列lg an是以lg 3为首项,
7、公比为2的等比数列,lg anlg a12n1,故an.(2)数列an中,a11,an1,则an_.答案解析由已知可得4,263,又23,是以3为首项,以3为公比的等比数列,23n,an.(3)数列an中,已知a11,an12an3n,则an_.答案3n(2)n1解析由已知可设an13n12(an3n),比较系数可得,即an13n12,又a1,是以为首项,2为公比的等比数列,an3n(2)n1,an3n(2)n1.五、归纳推理法例10 (1)设Sn是数列an的前n项和,且a11,an1Sn1Sn,则Sn_.答案解析由a11,an1SnSn1可得a2S1S2a1(a1a2),故a2,同理可得a3
8、,a4,由此猜想当n2时,有an,所以当n2时,Sna1a2an1.又因为S11也适合上式,所以Sn.(2)已知数列an满足an1若a1,则a2 018_.答案解析因为a1,根据题意得a2,a3,a4,a5,所以数列an是以4为周期的数列,又2 01850442,所以a2 018a2.跟踪训练5 (1)在数列an中,an1(1)nan2n1,则数列an的前12项和等于_答案78解析由题意,当n为奇数时,an1an2n1,an2an12n1,两式相减得an2an2;当n为偶数时,an1an2n1,an2an12n1,两式相加得an2an4n.所以S12(a1a3a11)(a2a4a12)234(2610)78.(2)已知数列an满足an2an1an,且a12,a23,Sn为数列an的前n项和,则S2 018的值为_答案5解析依题意得,a12,a23,a3a2a1321,a4a3a2132,a5a4a3213,a6a5a43(2)1,a7a6a51(3)2,a8a7a62(1)3,所以数列an是周期为6的周期数列又因为2 01863362,所以S2 018(231231)336235.(3)用x表示不小于x的最小整数,例如22,1.22,1.11.已知数列an满足a11,an1aan,则_.答案1解析a11,an1aan,an1,1.011,1.