1、小学典型应用题综合(七)【基础训练】1学校买两台同样的扫描仪,付给营业员1000元,找回80元。每台扫描仪多少元?2甲书架上有书180本,乙书架上书的本数是甲书架上的,甲、乙两个书架共有书多少本?3块田有120公顷,第一天耕了它的,第二天耕了它的37.5%,第二天比第一天多耕了多少公顷?4篮球队两名队员的身高和助跑摸高的成绩如下表:徐明丁刚身高/cm160170成绩/cm250265人的身高直接影响着他的弹跳成绩,直接用“265cm”和“250cm”来判断谁的弹跳成绩好,显然不合理。请计算出合适的数据,然后判断谁的助跑弹跳能力更强些?5有一批货,计划每小时运5吨,7小时可以运完。实际只用9小时
2、就完成任务,实际每小时能多运多少吨?(得数保留两位小数)6据考工记记载,制作青铜鼎使用的青铜中含锡与铜两种成份,且锡与铜的质量比为1:6,一个重4200克的青铜鼎中含锡多少克?7甲、乙两城相距480千米,一辆货车和一辆客车分别从甲、乙两城相对开出,4小时后相遇,货车和客车的速度比是3:5。货车和客车的速度分别是多少?8童乐幼儿园共有150本图书,其中的40%分给大班,剩下的图书按4:5分给小班和中班,小班和中班各分到多少本?9果园里桃树和梨树一共有1300棵,梨树的棵数比桃树的80%还多40棵。桃树有多少棵?10合唱小组有40人,其中男生人数是女生人数的,合唱小组中男、女各有多少人?11水果店
3、运来水果540千克,其中苹果占总数的还多30千克,苹果又比桔子少,求运来苹果和桔子各多少千克?12辆小轿车从甲地开往乙地,每小时行驶90千米。同时,一辆卡车从乙地开往甲地,6小时后两车相遇,小轿车又用了4小时到达乙地。相遇后,卡车多少小时可以到达甲地?13班级图书角的故事书本数是科普书本数的80%。买来16本故事书后,故事书与科普书一样多。班级图书角有科普书多少本?【拔高训练】1.甲、乙两车分别从A、B两地同时出发相向而行,两车经过8小时相遇,已知甲车行完全程要 15小时,乙车每小时行21千米,A、B两地之间的距离是多少千米?2一列180米长的火车途径一隧道,看监控记录知火车从进入隧道到完全离
4、开隧道用43秒,整列火车完全在隧道内的时间为23秒。问:隧道有多长?3某校招生考试,报考学生有被录取,录取者的平均分比录取分数线高6分,没被录取学生的平均分比录取分数线低24分,所有考生的平均分刚好为60分,那么录取分数线是多少分?4把一根竹竿垂直插到一个蓄水池的池底,浸湿部分是1.2米,掉过头把另一端垂直插到池底,这样没有浸湿的部分比全长的一半还少0.4米。这根竹竿没有浸湿的部分长多少米?5张叔叔开车从甲地去乙地,每分钟行500米,30分钟可到达,但行驶到中点时,因堵车停了5分钟。如果要按计划到达,行驶余下的路程张叔叔每分钟必须行多少米?来源:学科网【参考答案】【基础训练】1. 【答案】(1
5、00080)29202460(元)答:每台扫描仪460元。【解析】先求出买两台同样的扫描仪花了多少钱,再求每台扫描仪多少钱。“付给营业员1000元,找回80元”说明买两台扫描仪花了100080=920元,要求每台扫描仪多少钱,就是将花的钱数平均分成两份,每一份就是每台扫描仪的价钱,即9202=460元。2. 【答案】180+180=180+120=300(本)答:甲、乙两个书架共有书300本。【解析】本题考查分数的应用。乙书架上书的本数是甲书架上的,也就是说乙书架上书的本数是180的,这样就可以算出乙书架上书的本数,然后与180相加即可得到甲、乙两个书架共有书的本数。3. 【答案】解法一:12
6、037.5%120 解法二:120(37.5%)4540 1205(公顷) 5(公顷)答:第二天比第一天多耕了5公顷。 答:第二天比第一天多耕了5公顷。【解析】本题考查分数的应用。本题中和37.5%的整体“1”都是120公顷,已知整体求部分,可以用乘法分别计算出第一天和第二天耕地的具体量,再求差,也可以先计算出第二天比第一天多耕了整体“1”的几分之几,再用乘法求具体量。4. 【答案】250160=1.56252651701.5591.56251.559答:徐明的弹跳力更强些。【解析】本题考查有关弹跳的问题。人的身高与弹跳成绩是有关系的,人越高弹跳成绩会越好,可以根据弹跳成绩与人的身高倍数关系来
7、判断谁的助跑弹跳能力更强些。分别计算徐明和丁刚助跑摸高的成绩是本人身高的多少倍,5. 【答案】579=359=3.888883.89(吨)答:实际每小时能多运3.89吨.【解析】此题是一个归总应用题,解答本题的时候,我们先根据计划的工作效率计划的时间=工作总量,然后用工作总量除以实际的时间,就是实际的工作效率.6. 【答案】4200600(克) 答:一个重4200克的青铜鼎中含锡600克。【解析】本题考查的是比的应用,重点是对题中1:6的理解。“锡与铜的质量比为1:6”意为将青铜鼎的总质量看作整体“1”,将其平均分成(16)份,其中锡占1份,铜占6份。即锡的质量占青铜鼎总质量的,所以4200克
8、的青铜鼎中含锡的质量为4200600(克)。7. 【答案】4804120(千米/时)12045(千米/时) 12075(千米/时)答:货车的速度是45千米/时,客车的速度是75千米/时。【解析】本题考查的是行程问题中的相遇问题。根据速度和总路程时间,先计算出两车的速度和,再根据比的应用分别计算两车的速度。货车和客车的速度和为4804120(千米/时),题中货车和客车的速度比是3:5意指将两车的速度和平均分成(35)份,则货车的速度占这样的3份,客车的速度占这样的5份,即货车的速度是速度和的,客车的速度是速度和的,再用乘法分别计算他们的速度。8. 【答案】150(1-40%)=15060% =9
9、0(本)小班:90=40(本) 中班:90=50(本)答:小班分得40本,中班分得50本。【解析】本题考查百分数的应用和比的应用相关知识。共有150本图书,其中的40%分给大班,剩下的图书是:150(1-40%)=15060%=90(本)这90本按4:5分给小班和中班,那么小班:90=40(本) 中班:90=50(本)9. 【答案】解:设桃树有x棵。80%x+40+x=1300x=700来源:学科网ZXXK答:桃树有700棵。【解析】本题考查比单位“1”多百分之几的问题。本题把桃树的棵数看作单位“1”,梨树的棵数=桃树的棵数80%+40,等量关系为:梨树的棵数+桃树的棵数=1300,即桃树的棵
10、数80%+40+桃树的棵数=1300,列方程求解即可。根据等量关系:桃树的棵数80%+40+桃树的棵数=1300,列出方程。过程如下:10. 【答案】解:设女生人数为x,则男生人数有x。xx40x40x25男生人数:2515(人)答:合唱小组中男生15人,女生25人。【解析】本题中要求的是两个量,并且已知条件是这两个量之间的两个关系,所以我们可以用方程法来解答。来源:学+科+网Z+X+X+K11. 【答案】运来苹果为:540+30=150(千克)解:设运来桔子为x千克,则(l)x=150来源:学科网x=150x=150x=200答:水果店运来苹果150千克,桔子200千克。【解析】本题考查的是
11、有关分数混合运算以及解决实际问题的能力。把水果总质量看作单位“1”,把单位“1”平均分成9份,苹果占总数(单位“1”)的,还多30千克,苹果又比桔子少,是把桔子质量看作单位“1”,把桔子质量平均分成4份,苹果比桔子少1份。有关苹果和桔子的等量关系为:桔子质量(1)=苹果的质量,根据等量关系列出方程。12. 【答案】(906)(9046)540609(小时)答:相遇后,卡车9小时可以到达甲地。【解析】本题考查学生解决行程问题的能力。先求出卡车的速度和还要行驶的路程,再根据“时间路程速度”来计算卡车还要行驶的时间。由题意可知,小汽车4小时行驶的路程与卡车6小时行驶的路程相等,因为小汽车每小时行驶9
12、0千米,所以由此可计算出卡车的行驶速度是:904660(千米/时)。相遇后卡车还要行驶的路程与小汽车6小时行驶的路程相等,即906540(千米),再根据“时间路程速度”,可计算出相遇后,卡车还要多少时间可以到达甲地,即54060=9(小时)。13. 【答案】解法一:解:设班级图书角有科普书x本,则80%x16x来源:学。科。网x80%x1620%x16x80答:班级图书角有科普书80本。解法二:16(180%)1620%80(本)答:班级图书角有科普书80本。【解析】本题考查的是百分数的应用。“已知一个数的百分之几是多少,求这个数”的问题解决方法有两种:一是方程,二是除法。用方程法解,就是设班
13、级图书角有科普书x本,则故事书有80%x,根据“买来16本故事书后,故事书与科普书一样多”的等量关系,列方程为80%x16x,然后解方程得x=80。用除法解,重点要理解买来的16本故事书是整体“1”(科普书本数)的百分之几,显然是(180%),根据“已知部分,求整体”用除法,即可列式16(180%),然后计算得出结果。【拔高训练】1. 【答案】21(-)=21=360(千米)答:A、B两地之间的距离是360千米。【解析】设A、B两地之间的距离为单位“1”, 已知甲车行完全程要 15小时,则甲车每小时走总路程的,两车经过8小时相遇,两车每小时共走全程的,所以乙车每小时走全程的(-),已知乙车每小
14、时行21千米,则A、B两地之间的距离就是:21(-)=21=360(千米)2. 【答案】(1802)(4323)43180594(米) 答:隧道长是594米。【解析】本题中给出两个时间,我们重点找出在这两个时间差里走了多少路程,这样就可以计算出火车的行驶速度,进而计算隧道的长。“看监控记录知火车从进入隧道到完全离开隧道用43秒”,是指火车头进入隧道到火车尾离开隧道用时43秒,即在43秒的时间内火车行驶的路程是:隧道长一个车身长;“整列火车完全在隧道内的时间为23秒”,是指火车尾进入隧道到火车头出隧道用时23秒,即在23秒的时间内火车行驶的路程是:隧道长一个车身长。这样在两个时间差里,火车行驶的
15、路程是:两个车身长,即1802。路程除以所对应的时间便可得到火车的行驶速度:(1802)(4323)18(米/秒),则隧道的长43秒行驶的路程一个车身长,或者隧道的长23秒行驶的路程一个车身长,即4318180594(米),或者2318180594(米)。所以隧道的长是594米。3. 【答案】解:设录取分数线是x分,报考学生总数为A人,则有(x6)A(x24)(1)A60Ax2x1660x74答:录取分数线是74分。【解析】像这样存在多个量之间关系的问题,我们通常用方程去解决。设录取分数线是x分,则录取者的平均分是(x6)分,没被录取学生的平均分是(x24)分。又因为平均分人数总分,我们不妨设
16、报考学生总数为A人,则录取者有A,没被录取学生有(1)A。再根据总分相等列方程,即可解答。4. 【答案】解:设这根竹竿没有浸湿的部分长x米,则两次浸湿的部分都是1.2米,所以全长是x1.22,有:x (x1.22)0.4xx1.20.4x0.8x1.6答:这根竹竿没有浸湿的部分长1.6米。【解析】本题考查的是学生对解方程的认识。题中有明显的关系式:“没有浸湿的部分比全长的一半还少0.4米”,所以我们不妨用方程法来解决。5. 【答案】500302(302-5)=150002(15-5)=750010=750(米)答:行驶余下的路程张叔叔每分钟必须行750米。【解析】本题考查路程速度时间的关系,关键是找出三者对应的量。要求行驶的速度要先找出余下的路程是多少,再找出时间是多少,路程除以时间就是速度。每分钟行500米,30分钟可到达,甲地到乙地的路程是50030=15000(米)行驶到中点时,因堵车停了5分钟。所以,余下的路程是150002=7500米,时间是302-5=10分钟,所以速度是750010=750(米)。