1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并
2、交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知正项等比数列的前项和为,则的最小值为( )ABCD2已知复数,则的虚部为( )A1BC1D3已知复数z1=3+4i,z2=a+i,且z1是实数,则实数a等于()ABC-D-4已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则( )AB3CD25若某几何体的三视图如图所示,则该几何体的表面积为( )A240B264C274D2826已知展开式的二项式系数和与展开式中常数项相等,则项系数为( )A10B32C40D807已知函数,当时,不等式恒成立,则实数a的取值范
3、围为( )ABCD8某装饰公司制作一种扇形板状装饰品,其圆心角为120,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为( )A58厘米B63厘米C69厘米D76厘米9设是虚数单位,则“复数为纯虚数”是“”的( )A充要条件B必要不充分条件C既不充分也不必要条件D充分不必要条件10五名志愿者到三个不同的单位去进行帮扶,每个单位至少一人,则甲、乙两人不在同一个单位的概率为( )ABCD11已知全集,函数的定义域为,集合,则下列结论正确的是ABCD12已知的内角的对边分别是且,若为最大边,则
4、的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知,且,则最小值为_14学校艺术节对同一类的,四件参赛作品,只评一件一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“或作品获得一等奖”; 乙说:“作品获得一等奖”;丙说:“,两项作品未获得一等奖”; 丁说:“作品获得一等奖”若这四位同学中有且只有两位说的话是对的,则获得一等奖的作品是_.15三个小朋友之间送礼物,约定每人送出一份礼物给另外两人中的一人(送给两个人的可能性相同),则三人都收到礼物的概率为_.16设等差数列的前项和为,若,则_,的最大值是_.三、解答题:共70分。解答应写出
5、文字说明、证明过程或演算步骤。17(12分)为了解本学期学生参加公益劳动的情况,某校从初高中学生中抽取100名学生,收集了他们参加公益劳动时间(单位:小时)的数据,绘制图表的一部分如表.(1)从男生中随机抽取一人,抽到的男生参加公益劳动时间在的概率:(2)从参加公益劳动时间的学生中抽取3人进行面谈,记为抽到高中的人数,求的分布列;(3)当时,高中生和初中生相比,那学段学生平均参加公益劳动时间较长.(直接写出结果)18(12分)已知,其中(1)当时,设函数,求函数的极值(2)若函数在区间上递增,求的取值范围;(3)证明:19(12分)已知.(1)解关于x的不等式:;(2)若的最小值为M,且,求证
6、:.20(12分)已知函数(,)满足下列3个条件中的2个条件:函数的周期为;是函数的对称轴;且在区间上单调.()请指出这二个条件,并求出函数的解析式;()若,求函数的值域.21(12分)已知函数.(1)当时,求不等式的解集;(2)若对任意成立,求实数的取值范围.22(10分)某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).表中,.(1)根据散点图判断,与哪一个更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)(2)根据判断结果和表中数据,建立关
7、于的回归方程;(3)若单位时间内煤气输出量与旋转的弧度数成正比,那么,利用第(2)问求得的回归方程知为多少时,烧开一壶水最省煤气?附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计值分别为,2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】由,可求出等比数列的通项公式,进而可知当时,;当时,从而可知的最小值为,求解即可.【题目详解】设等比数列的公比为,则,由题意得,得,解得,得.当时,;当时,则的最小值为.故选:D.【答案点睛】本题考查等比数列的通项公式的求法,考查等比数列的
8、性质,考查学生的计算求解能力,属于中档题.2、A【答案解析】分子分母同乘分母的共轭复数即可.【题目详解】,故的虚部为.故选:A.【答案点睛】本题考查复数的除法运算,考查学生运算能力,是一道容易题.3、A【答案解析】分析:计算,由z1,是实数得,从而得解.详解:复数z1=3+4i,z2=a+i,.所以z1,是实数,所以,即.故选A.点睛:本题主要考查了复数共轭的概念,属于基础题.4、D【答案解析】根据抛物线的定义求得,由此求得的长.【题目详解】过作,垂足为,设与轴的交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【答案点睛】本小题主要考查抛物线的定义,考查数形结合的数学思想方
9、法,属于基础题.5、B【答案解析】将三视图还原成几何体,然后分别求出各个面的面积,得到答案.【题目详解】由三视图可得,该几何体的直观图如图所示,延长交于点,其中,所以表面积.故选B项.【答案点睛】本题考查三视图还原几何体,求组合体的表面积,属于中档题6、D【答案解析】根据二项式定理通项公式可得常数项,然后二项式系数和,可得,最后依据,可得结果.【题目详解】由题可知:当时,常数项为又展开式的二项式系数和为由所以当时,所以项系数为故选:D【答案点睛】本题考查二项式定理通项公式,熟悉公式,细心计算,属基础题.7、D【答案解析】由变形可得,可知函数在为增函数, 由恒成立,求解参数即可求得取值范围.【题
10、目详解】,即函数在时是单调增函数.则恒成立. .令,则时,单调递减,时单调递增.故选:D.【答案点睛】本题考查构造函数,借助单调性定义判断新函数的单调性问题,考查恒成立时求解参数问题,考查学生的分析问题的能力和计算求解的能力,难度较难.8、B【答案解析】由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利用弧长公式计算即可.【题目详解】因为弧长比较短的情况下分成6等分,所以每部分的弦长和弧长相差很小,可以用弧长近似代替弦长,故导线长度约为63(厘米).故选:B.【答案点睛】本题主要考查了扇形弧长的计算,属于容易题.9、D【答案解析】结合纯虚数的概念,可得,再结合充分条件和必要条件的定义即可
11、判定选项.【题目详解】若复数为纯虚数,则,所以,若,不妨设,此时复数,不是纯虚数,所以“复数为纯虚数”是“”的充分不必要条件.故选:D【答案点睛】本题考查充分条件和必要条件,考查了纯虚数的概念,理解充分必要条件的逻辑关系是解题的关键,属于基础题.10、D【答案解析】三个单位的人数可能为2,2,1或3,1,1,求出甲、乙两人在同一个单位的概率,利用互为对立事件的概率和为1即可解决.【题目详解】由题意,三个单位的人数可能为2,2,1或3,1,1;基本事件总数有种,若为第一种情况,且甲、乙两人在同一个单位,共有种情况;若为第二种情况,且甲、乙两人在同一个单位,共有种,故甲、乙两人在同一个单位的概率为
12、,故甲、乙两人不在同一个单位的概率为.故选:D.【答案点睛】本题考查古典概型的概率公式的计算,涉及到排列与组合的应用,在正面情况较多时,可以先求其对立事件,即甲、乙两人在同一个单位的概率,本题有一定难度.11、A【答案解析】求函数定义域得集合M,N后,再判断【题目详解】由题意,故选A【答案点睛】本题考查集合的运算,解题关键是确定集合中的元素确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定12、C【答案解析】由,化简得到的值,根据余弦定理和基本不等式,即可求解.【题目详解】由,可得,可得,通分得,整理得,所以,因为为三角形的最大
13、角,所以,又由余弦定理 ,当且仅当时,等号成立,所以,即,又由,所以的取值范围是.故选:C.【答案点睛】本题主要考查了代数式的化简,余弦定理,以及基本不等式的综合应用,试题难度较大,属于中档试题,着重考查了推理与运算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】首先整理所给的代数式,然后结合均值不等式的结论即可求得其最小值.【题目详解】,结合可知原式,且,当且仅当时等号成立.即最小值为.【答案点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正各项均为正;二定积或和为定值;三相等等号能否取得”,若忽略了某个条件,就会出现错误14、B【答案解析】首先根
14、据“学校艺术节对四件参赛作品只评一件一等奖”,故假设分别为一等奖,然后判断甲、乙、丙、丁四位同学的说法的正确性,即可得出结果【题目详解】若A为一等奖,则甲、丙、丁的说法均错误,不满足题意;若B为一等奖,则乙、丙的说法正确,甲、丁的说法错误,满足题意;若C为一等奖,则甲、丙、丁的说法均正确,不满足题意;若D为一等奖,则乙、丙、丁的说法均错误,不满足题意;综上所述,故B获得一等奖【答案点睛】本题属于信息题,可根据题目所给信息来找出解题所需要的条件并得出答案,在做本题的时候,可以采用依次假设为一等奖并通过是否满足题目条件来判断其是否正确15、【答案解析】基本事件总数,三人都收到礼物包含的基本事件个数由此能求出三人都收到礼物的概率【题目详解】三个小朋友之间准备送礼物,约定每人只能送出一份礼物给另外两人中的一人(送给两个人的可能性相同),基本事件总数,三人都收到礼物包含的基本