收藏 分享(赏)

吉林省五地六市联盟2023学年高三适应性调研考试数学试题(含解析).doc

上传人:la****1 文档编号:34815 上传时间:2023-01-06 格式:DOC 页数:22 大小:1.97MB
下载 相关 举报
吉林省五地六市联盟2023学年高三适应性调研考试数学试题(含解析).doc_第1页
第1页 / 共22页
吉林省五地六市联盟2023学年高三适应性调研考试数学试题(含解析).doc_第2页
第2页 / 共22页
吉林省五地六市联盟2023学年高三适应性调研考试数学试题(含解析).doc_第3页
第3页 / 共22页
吉林省五地六市联盟2023学年高三适应性调研考试数学试题(含解析).doc_第4页
第4页 / 共22页
吉林省五地六市联盟2023学年高三适应性调研考试数学试题(含解析).doc_第5页
第5页 / 共22页
吉林省五地六市联盟2023学年高三适应性调研考试数学试题(含解析).doc_第6页
第6页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设,则,三数的大小关系是ABCD2在三棱锥中,则三棱锥外接球的表面积是( )ABCD3已知等差数列an,则“a2a1”是“数列an为单调递增数列”的( )A充分而不必要条件B必要而不充分条

2、件C充分必要条件D既不充分也不必要条件4在等差数列中,若为前项和,则的值是( )A156B124C136D1805设i是虚数单位,若复数()是纯虚数,则m的值为( )ABC1D36如图所示,为了测量、两座岛屿间的距离,小船从初始位置出发,已知在的北偏西的方向上,在的北偏东的方向上,现在船往东开2百海里到达处,此时测得在的北偏西的方向上,再开回处,由向西开百海里到达处,测得在的北偏东的方向上,则、两座岛屿间的距离为( )A3BC4D7已知函数,则的最小值为( )ABCD8某高中高三(1)班为了冲刺高考,营造良好的学习氛围,向班内同学征集书法作品贴在班内墙壁上,小王,小董,小李各写了一幅书法作品,

3、分别是:“入班即静”,“天道酬勤”,“细节决定成败”,为了弄清“天道酬勤”这一作品是谁写的,班主任对三人进行了问话,得到回复如下:小王说:“入班即静”是我写的;小董说:“天道酬勤”不是小王写的,就是我写的;小李说:“细节决定成败”不是我写的.若三人的说法有且仅有一人是正确的,则“入班即静”的书写者是( )A小王或小李B小王C小董D小李9正项等比数列中,且与的等差中项为4,则的公比是 ( )A1B2CD10已知函数,若对任意的,存在实数满足,使得,则的最大值是( )A3B2C4D511已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,则当时,的最大值是( )A8B9

4、C10D1112已知三棱柱( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设复数满足,其中是虚数单位,若是的共轭复数,则_14已知函数,若关于的方程在定义域上有四个不同的解,则实数的取值范围是_.15已知点为双曲线的右焦点,两点在双曲线上,且关于原点对称,若,设,且,则该双曲线的焦距的取值范围是_.16等差数列(公差不为0),其中,成等比数列,则这个等比数列的公比为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列的通项,数列为等比数列,且,成等差数列.(1)求数列的通项;(2)设,求数列的前项和.18(12分)已知的图象在处的切线方程为

5、.(1)求常数的值;(2)若方程在区间上有两个不同的实根,求实数的值.19(12分)已知椭圆的左右焦点分别是,点在椭圆上,满足(1)求椭圆的标准方程;(2)直线过点,且与椭圆只有一个公共点,直线与的倾斜角互补,且与椭圆交于异于点的两点,与直线交于点(介于两点之间),是否存在直线,使得直线,的斜率按某种排序能构成等比数列?若能,求出的方程,若不能,请说理由.20(12分)为了解网络外卖的发展情况,某调查机构从全国各城市中抽取了100个相同等级地城市,分别调查了甲乙两家网络外卖平台(以下简称外卖甲、外卖乙)在今年3月的订单情况,得到外卖甲该月订单的频率分布直方图,外卖乙该月订单的频数分布表,如下图

6、表所示.订单:(单位:万件) 频数1223订单:(单位:万件)频数402020102(1)现规定,月订单不低于13万件的城市为“业绩突出城市”,填写下面的列联表,并根据列联表判断是否有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.业绩突出城市业绩不突出城市总计外卖甲外卖乙总计(2)由频率分布直方图可以认为,外卖甲今年3月在全国各城市的订单数(单位:万件)近似地服从正态分布,其中近似为样本平均数(同一组数据用该区间的中点值作代表),的值已求出,约为3.64,现把频率视为概率,解决下列问题:从全国各城市中随机抽取6个城市,记为外卖甲在今年3月订单数位于区间的城市个数,求的数学期

7、望;外卖甲决定在今年3月订单数低于7万件的城市开展“订外卖,抢红包”的营销活动来提升业绩,据统计,开展此活动后城市每月外卖订单数将提高到平均每月9万件的水平,现从全国各月订单数不超过7万件的城市中采用分层抽样的方法选出100个城市不开展营销活动,若每按一件外卖订单平均可获纯利润5元,但每件外卖平均需送出红包2元,则外卖甲在这100个城市中开展营销活动将比不开展营销活动每月多盈利多少万元?附:参考公式:,其中.参考数据:0.150.100.050.0250.0100.0012.7022.7063.8415.0246.63510.828若,则,.21(12分)如图,三棱柱的侧棱垂直于底面,且,是棱

8、的中点.(1)证明:;(2)求二面角的余弦值.22(10分)已知椭圆,点为半圆上一动点,若过作椭圆的两切线分别交轴于、两点.(1)求证:;(2)当时,求的取值范围.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】利用对数函数,指数函数以及正弦函数的性质和计算公式,将a,b,c与,比较即可.【题目详解】由,所以有.选C.【答案点睛】本题考查对数值,指数值和正弦值大小的比较,是基础题,解题时选择合适的中间值比较是关键,注意合理地进行等价转化.2、B【答案解析】取的中点,连接、,推导出

9、,设设球心为,和的中心分别为、,可得出平面,平面,利用勾股定理计算出球的半径,再利用球体的表面积公式可得出结果.【题目详解】取的中点,连接、,由和都是正三角形,得,则,则,由勾股定理的逆定理,得.设球心为,和的中心分别为、.由球的性质可知:平面,平面,又,由勾股定理得.所以外接球半径为.所以外接球的表面积为.故选:B.【答案点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,找出球心的位置,并以此计算出球的半径长,考查推理能力与计算能力,属于中等题.3、C【答案解析】试题分析:根据充分条件和必要条件的定义进行判断即可解:在等差数列an中,若a2a1,则d0,即数列an为单调递增数

10、列,若数列an为单调递增数列,则a2a1,成立,即“a2a1”是“数列an为单调递增数列”充分必要条件,故选C考点:必要条件、充分条件与充要条件的判断4、A【答案解析】因为,可得,根据等差数列前项和,即可求得答案.【题目详解】,.故选:A.【答案点睛】本题主要考查了求等差数列前项和,解题关键是掌握等差中项定义和等差数列前项和公式,考查了分析能力和计算能力,属于基础题.5、A【答案解析】根据复数除法运算化简,结合纯虚数定义即可求得m的值.【题目详解】由复数的除法运算化简可得,因为是纯虚数,所以,故选:A.【答案点睛】本题考查了复数的概念和除法运算,属于基础题.6、B【答案解析】先根据角度分析出的

11、大小,然后根据角度关系得到的长度,再根据正弦定理计算出的长度,最后利用余弦定理求解出的长度即可.【题目详解】由题意可知:,所以,所以,所以,又因为,所以,所以.故选:B.【答案点睛】本题考查解三角形中的角度问题,难度一般.理解方向角的概念以及活用正、余弦定理是解答问题的关键.7、C【答案解析】利用三角恒等变换化简三角函数为标准正弦型三角函数,即可容易求得最小值.【题目详解】由于,故其最小值为:.故选:C.【答案点睛】本题考查利用降幂扩角公式、辅助角公式化简三角函数,以及求三角函数的最值,属综合基础题.8、D【答案解析】根据题意,分别假设一个正确,推理出与假设不矛盾,即可得出结论.【题目详解】解

12、:由题意知,若只有小王的说法正确,则小王对应“入班即静”,而否定小董说法后得出:小王对应“天道酬勤”,则矛盾;若只有小董的说法正确,则小董对应“天道酬勤”,否定小李的说法后得出:小李对应“细节决定成败”,所以剩下小王对应“入班即静”,但与小王的错误的说法矛盾;若小李的说法正确,则“细节决定成败”不是小李的,则否定小董的说法得出:小王对应“天道酬勤”,所以得出“细节决定成败”是小董的,剩下“入班即静”是小李的,符合题意.所以“入班即静”的书写者是:小李.故选:D.【答案点睛】本题考查推理证明的实际应用.9、D【答案解析】设等比数列的公比为q,运用等比数列的性质和通项公式,以及等差数列的中项性质,

13、解方程可得公比q【题目详解】由题意,正项等比数列中,可得,即,与的等差中项为4,即,设公比为q,则,则负的舍去,故选D【答案点睛】本题主要考查了等差数列的中项性质和等比数列的通项公式的应用,其中解答中熟记等比数列通项公式,合理利用等比数列的性质是解答的关键,着重考查了方程思想和运算能力,属于基础题10、A【答案解析】根据条件将问题转化为,对于恒成立,然后构造函数,然后求出的范围,进一步得到的最大值.【题目详解】,对任意的,存在实数满足,使得, 易得,即恒成立,对于恒成立,设,则,令,在恒成立,故存在,使得,即,当时,单调递减;当时,单调递增.,将代入得:,且,故选:A【答案点睛】本题考查了利用

14、导数研究函数的单调性,零点存在定理和不等式恒成立问题,考查了转化思想,属于难题.11、B【答案解析】根据题意计算,解不等式得到答案.【题目详解】是以1为首项,2为公差的等差数列,.是以1为首项,2为公比的等比数列,.,解得.则当时,的最大值是9.故选:.【答案点睛】本题考查了等差数列,等比数列,f分组求和,意在考查学生对于数列公式方法的灵活运用.12、C【答案解析】因为直三棱柱中,AB3,AC4,AA112,ABAC,所以BC5,且BC为过底面ABC的截面圆的直径取BC中点D,则OD底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R13,即R二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由于,则

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 教辅习题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2