收藏 分享(赏)

旧水泥路面加铺沥青超薄磨耗层层间黏结性能研究.pdf

上传人:哎呦****中 文档编号:3641420 上传时间:2024-06-26 格式:PDF 页数:7 大小:4.46MB
下载 相关 举报
旧水泥路面加铺沥青超薄磨耗层层间黏结性能研究.pdf_第1页
第1页 / 共7页
旧水泥路面加铺沥青超薄磨耗层层间黏结性能研究.pdf_第2页
第2页 / 共7页
旧水泥路面加铺沥青超薄磨耗层层间黏结性能研究.pdf_第3页
第3页 / 共7页
亲,该文档总共7页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023No.3126上海么路材料与试验SHANGHAI HIGHWAYS旧水泥路面加铺沥青超薄磨耗层层间黏结性能研究肖梅强,叶奋,胡诗园(1.同济大学道路与交通工程教育部重点实验室,上海2 0 18 0 4;2.辽宁省交通规划设计院有限责任公司,辽宁沈阳110 16 6)摘要:旧水泥路面加铺超薄磨耗层的层间黏结性能直接影响到加铺结构的使用寿命。通过成型的复合结构试件,结合层间拉拔试验和斜剪试验,对几种典型防水黏结材料和一种渗透封闭材料的层间黏结性能进行了研究。试验结果表明:各防水黏结材料在最佳涂布量下,拉拔强度排序为热熔复合改性沥青 SBS改性沥青 7 0#基质沥青 GS改性乳化沥青。涂布速

2、干型渗透剂F,可提高防水黏结材料的拉拔强度和层间剪切强度,且不改变其最佳涂布量。关键词:旧水泥路面;超薄磨耗层;层间黏结;防水黏结层;渗透封闭层0引言在旧水泥路面的养护中,加铺沥青层是一种常见的方法。其中,超薄磨耗层加铺技术因其施工速度快、原材料消耗少,以及对环境影响小的优势,在近年来得到了更多的关注 1-4。水泥路面加铺超薄沥青磨耗层的层间黏结性能是直接影响加铺结构使用寿命的关键因素之一 5-6 。由于厚度薄至15 2 5 mm,加铺层在车辆荷载的作用下,会与旧水泥路面间产生较大的法向拉应力和水平向剪应力,使其出现脱层和层间滑移的趋势。因此,对层间黏结材料的拉拔强度和抗剪切强度提出了更高的要

3、求 7 。目前,针对旧水泥路面加铺沥青超薄磨耗层层间黏结性能的研究尚有空白。在水泥路面加铺沥青层之前,需洒布一层防水黏结层材料,用于加铺结构与旧水泥路面板块之间的黏结。在某些工艺中,会在洒布黏层材料前,往旧水泥路面上涂布一种速干型渗透剂,作为渗透封闭层。通过对旧水泥路面板块的有效渗透,提高防水黏结层与旧水泥混凝土板块之间的黏结强度 8 ,如图1所示。,防水粘结层渗透封闭层旧水泥路面板块图1渗透封闭层示意图本文以几种代表性的热沥青、乳化沥青和水溶性黏结剂GS作为防水黏结层材料的研究对象,以某种速干型渗透剂材料F作为渗透封闭层材料的研究对象,通过拉拔试验和不同温度下的斜剪试验,来评价不同材料组合形

4、式下的黏结性能,为旧水泥路面加铺沥青超薄磨耗层提供最优的层间黏结方案1原材料及性能本文选用的防水黏结材料为7 0#基质沥青、SBS改性沥青、热熔复合改性沥青、水溶性黏结剂GS和PC-3阳离子改性乳化沥青,相应的技术指标分别如表1 5 所示。本文选用的速干型渗透剂材料F技术指标见表6。表17 0#基质沥青技术指标项目单位指标试验方法针人度(2 5,10 0 g,5s)0.1 mm65T0604软化点49.8T0606黏度,13 5 Pas0.416T0625延度,15 cm100T0605旋转薄膜烘箱试验后(16 3,8 5 min)质量变化%0.4T0610针人度比,2 5%74T0604延度

5、,15 cm59T0605收稿日期:2 0 2 3-0 2-2 4基金项目:浙江省公路与运输管理中心科技计划项目资助:农村公路水泥路面超薄磨耗加铺层技术研究(2 0 2 0 H10No.32023上海2 统12 7SHANGHAITHXAYS材料与试验表2 SBS改性沥青性能指标测试项目结果测试方法针人度(2 5)/dmm55T0604软化点/84T0606延度(5 )/cm31T0605旋转薄膜烘箱试验后(16 3,8 5 min)质量损失/%0.05T0610针人度比/%70T0604延度(5)/cm16T0605表3 热熔复合改性沥青技术指标项目单位指标试验方法针人度(2 5,10 0

6、g,5s)0.1 mm30T0604弹性恢复%75T0662软化点80T0606延度,5 cm10T0605运动黏度,18 0 Pas3.0T0625旋转薄膜烘箱试验后(16 3,8 5 min)质量变化%65T0604延度,5 cm10T0605表4水溶性黏结剂GS技术指标项目单位指标试验方法外观一褐色液态一蒸馅固含量%48.9ASTM D244闪点28.4ASTMD3143黏度(C40,4)S12.7T0621柔韧性一不大于1级一断裂延伸率%不小于8 0 0GB/T 16777-2008不透水性,0.3 MPa一30min不渗水一固化时间,2 0 h30GB/T 16777-2008表5

7、PC-3阳离子改性乳化沥青技术指标项目单位指标试验方法粒子电荷阳离子(+)T0653一破乳速度一中裂T0658筛上残留物,1.18 mm筛%0.05T0652恩格拉黏度,2 5 一4T0622道路标准黏度,C25.3S14T0621蒸发残留物残留分含量%56T0651针人度,2 5 0.1 mm65T0604延度,15 cm44T0605溶解度%98.7T0607与矿料的黏附性,裹覆面积一1T06541d0.7存储稳定性T06555d0.46表6 速干型渗透剂F技术指标项目单位指标试验方法固体含量%20表干时间h0.5GB16777实干时间1.0不透水性(0.3 MPa,30min)不透水一2

8、试验条件及试验方法2.1层间拉拔试验本文采用涂布量控制方式来进行层间拉拔试验,即根据不同的涂布量,将黏结材料涂布在整个界面上。本试验中,统一采用0.2 mm凹槽深度的拔头 9。具体涂布方式如表7 所示。表7 拉拔试验涂布方式涂布方式涂布材料(组合)单一GS、P C-3 阳离子乳化沥青、热熔复合改性沥青、SBS涂布改性沥青、7 0#基质沥青涂布量控制组合“F+GS”、F+P C-3 阳离子乳化沥青”、“F+热熔复合改涂布性沥青”“F+SBS改性沥青”“F+70#基质沥青”拉拔试验的试验方法参照AASHITOT361-1610)进行。使用长10 0 mm宽10 0 mm高3 0 mm的水泥混凝土试

9、件作为底座,以10 0 mm100mm的表面作为试验的界面并打磨,保证界面状态一致性。制备拉拔试件时,热熔复合改性沥青加热到18 5 190 熔化,SBS改性沥青加热到17 5 18 0 熔化,7 0#基质沥青加热到16 0 17 0 熔化,应在涂布前充分搅拌。常温涂布的CS、乳化沥青和速干型渗透剂F则无需进行加热。涂布量控制试验按照每种黏结材料的推荐涂布量,在范围内选取5 个涂布量,见表8。速干型渗透剂F的涂布量采用0.4L/m。均匀地将材料涂满水泥混凝土底座。涂布量采用水泥混凝土底座涂布前后的质量差来控制。复合涂布时,下层的速干型渗透剂F涂布后,在常温条件下静置3 0 min以上,再涂布防

10、水黏结材料,如图2 所示。2023No.3128上语2 路SHANGHAI HIGHWAYS材料与试表8 各材料推荐涂布量(L/m)材料类型推荐涂布量初试涂布量水溶性黏结剂CS0.40.60.40.0.45、0.5 0.0.5 5、0.6 0PC-3阳离子改性乳化沥青0.40.80.400.50、0.6 0、0.7 0,0.8 070#基质沥青0.61.00.60.0.70.0.80.0.90、1.0 0热熔复合改性沥青0.81.20.80.0.90、1.0 0、1.10、1.2 0SBS改性沥青0.81.20.80、0.90、1.0 0、1.10、1.2 0图2 成型拉拔试件试件养生后,立即

11、采用PosiTestAT-A拉拔仪进行强度测试,如图3 所示。控制加载速率为0.7 MPa/s,取一个试件的所有拔头的平均值为对应黏结材料的拉拔强度。1.62Defelske图3 拉拔强度测试2.2层间剪切试验超薄沥青罩面的受力状态接近于斜剪试验的加载模式。斜剪试验考虑到罩面层受到的法向应力,采用定制的斜剪模具进行40 斜剪试验,并对水泥路面加铺超薄沥青罩面的层间抗剪强度进行评价。试验温度选取2 5 和45 两个温度水平选用沥青马蹄脂碎石混合料。针对混合料级配的选取,我国现行规范中建议,沥青马蹄脂碎石混合料的结构层厚度不宜小于集料最大粒径的2.5 倍,以保证最大公称粒径的大颗粒集料能形成良好的

12、嵌挤。超薄磨耗层铺装厚度一般在2 cm左右。因此,本文采用SMA-8的级配形式。对于“水泥混凝土+黏结材料+SMA-8沥青混合料 复合试件,先成型尺寸为3 0 cm30cm5cm的水泥混凝土试件,将其放人尺寸为3 0 cm30cm10cm的轮碾成型模具中。涂布热熔复合改性沥青、SBS改性沥青和7 0#基质沥青的试件分别以18 5 190、175180和16 0 17 0 预热,其他材料则无需预热。预热后,将各黏结材料按照最佳涂布量,均匀涂布到水泥混凝土试件的表面。随后拌制SMA-8沥青混合料。拌合后,立即将其摊铺在水泥混凝土试件表面,并用轮碾仪进行碾压,控制上层SMA-8沥青层的厚度为5 cm

13、。将复合车辙板静置至少48 h后脱模,切割得到若干10 cm10cm10cm的斜剪试验试件,见图4。SB乳化70#图4复合试件图片进行斜剪试验时,将试件及斜剪模具在指定温度的环境箱中保温不小于5 h。斜剪试验则在压力试验机上进行。加载时,加载速率为10 mm/min,直至试件发生层间剪切破坏,如图5 所示。SS图5 斜剪试验2023No.3上涵么统12 9SHANGHAI HIGHWAYS材料与试验层间抗剪强度的计算方法如式(1)所示Tf=Fx103Xsin(1)S式中:f一-层间黏结材料的抗剪强度,MPa;F一复合试件开始破坏时的临界荷载,kN;S 一一复合试件接触面积,本试验中为0.0 1

14、m;剪切角度,本文中取40 3试验结果分析3.1层间拉拔试验结果分析涂布量控制方式下,不同涂布量的各种防水黏结材料的拉拔试验结果如图6 所示1.6F+70#70#F+热熔热熔1.4F+SBSSBS1.32F+GSGSF+乳化沥青-乳化沥青1.151.21.181.00.99C0.850.750.80.60.710.710.460.40.400.20.40.50.60.70.80.91.01.11.2涂布量/(Lm)图6 涂布量控制方式下拉拔试验结果由试验结果可知:(1)除SBS改性沥青外,其他防水黏结材料的拉拔强度均随着涂布量的增加,先增加、后减小,且均有各自的最佳涂布量。7 0#基质沥青、热

15、熔复合改性沥青、SBS改性沥青、GS和乳化沥青的最佳涂布量分别为0.7 L/m.0.9 L/m.0.8 L/m.0.5 L/m和0.6 L/m。(2)总体而言,热沥青类材料的拉拔强度均高于常温涂布的材料。最佳涂布量下,拉拔强度的排序为热熔复合改性沥青 SBS改性沥青 7 0#基质沥青 GS乳化沥青。(3)无论何种防水黏结材料,先在下层涂布速干型渗透剂F,都提高了其黏结强度。7 0#基质沥青、SBS改性沥青和热熔复合改性沥青分别提升了19.1%、15.3%和18.3%,而GS和改性乳化沥青仅分别提升了5.6%和15.0%,表明其对热沥青类材料的提升效果更加显著。而且,先涂布速干型渗透剂F,并不会

16、影响防水黏结材料的最佳涂布量。3.2层间剪切试验结果分析25和45 下的斜剪试验结果如表9 和图7 所示可以看出:(1)热熔复合改性沥青在不同温度下,均具有最高的抗剪切强度。在2 5 下,达到了1.0 95 MPa。下层涂布速干型渗透剂F时,则高达1.3 2 3 MPa。具体抗剪强度排序为热熔复合改性沥青 SBS改性沥青 GS70#基质沥青 改性乳化沥青。其中,水溶性黏结剂GS的层间抗剪强度超过了7 0#基质沥青,与拉拔强度排序不同。(2)速干型渗透剂F能够提高各种黏结材料的层间抗剪强度,对热沥青的提升效果更明显。其在2 5 和45 下对热熔复合改性沥青的提升程度,分别达到2023No.313

17、0上涵么路材料与谅SHANGHAIHIGHWAYS表9斜剪试验结果25斜剪试验45斜剪试验材料类型破坏荷载/kN抗剪强度/MPa破坏荷载/kN抗剪强度/MPa70#10.7030.6886.2860.404F+70#11.8860.7647.4870.481热熔17.0341.0959.4220.606F+热熔20.5821.32313.4310.863SBS13.2390.8517.0650.454F+SBS15.3080.98410.1090.650GS11.0920.7136.8000.437F+GS12.1660.7827.8830.507乳化沥青9.9100.6375.9160.38

18、0F+乳化沥青10.5630.6796.6130.4251.41.21.00.80.60.40.20乳化F+乳化70#F+70#热熔F+热熔SBSF+SBSGSF+CS沥青沥青70#基质沥青热熔复合改性沥青SBS改性沥青GS溶剂型粘结剂乳化沥青250.6880.7641.0951.3230.8510.9840.7130.7820.6370.679口45 0.4040.4810.6060.8630.4540.6500.4370.5070.3800.425图7不同温度下的各材料抗剪强度了2 0.8%和42.4%。(3)随着试验温度由2 5 升高到45,各种黏结材料的抗剪强度均出现了较大幅度的下降。

19、但在下层涂布速干型渗透剂F后,热熔复合改性沥青和SBS改性沥青的抗剪强度降幅减小,这表明速干型渗透剂F能够降低二者的抗剪强度对于高温的敏感性。4结语(1)在涂布量控制下,各个防水黏结材料均存在其最佳涂布量。7 0#基质沥青、热熔复合改性沥青、SBS改性沥青、GS和乳化沥青的最佳涂布量分别为0.7 L/m、0.9 L/m、0.8 L/m、0.5 L/m和0.6 L/m。(2)拉拔强度排序为热熔复合改性沥青 SBS改性沥青 7 0#基质沥青 GS改性乳化沥青。抗剪强度排序为热熔复合改性沥青 SBS改性沥青 GS70#基质沥青 改性乳化沥青。综合来看,热沥青类材料的层间黏结效果优于常温涂布的材料。(

20、3)速干型渗透剂F的加人,(下转第140 页)2023140上涵2 络No.3上接第13 0 页材料与试验SHANGHAI HIGHWAYS-表8 水泥磷石膏稳定碎石的干缩抗裂系数磷石膏掺量劈裂强度/MPa抗压回弹模量/MPa最大干缩应变/%干缩抗裂系数/%0%0.9521853133.25%1.3521202545.610%1.4221652686.8从表8 中可以看出,在三种磷石膏掺量情况下,水泥磷石膏稳定碎石的劈裂强度、抗压回弹模量、最大干缩应变及干缩抗裂系数随着磷石膏掺量的增加,逐渐增大。说明磷石膏的掺入,能有效改善水泥稳定碎石的抗干缩开裂能力。3丝结语本文通过研究发现,水泥磷石膏稳定

21、碎石的无侧限抗压强度及水稳性能随着磷石膏含量的增加,呈现先增后减的情况。同时,磷石膏不仅能有效改善水泥磷石膏稳定碎石的收缩性能及抗开裂能力,还能提高稳定碎石的劈裂强度、抗压回弹模量和最大干缩应变。研究结果可为行业发展提供参考。提高了各防水黏结材料的拉拔强度和层间剪切强度,对热沥青材料的提升效果更明显。加人速干型渗透剂,并不改变各材料的最佳涂布量,且能够降低热熔复合改性沥青和SBS改性沥青的层间抗剪强度对于高温的敏感性。参考文献1李交,闫国杰,赫振华,等.薄层“白加黑”沥青加铺层的应用研究 J.上海公路,2 0 11(0 1):10-14+10.2李保.超薄磨耗层在高速公路水泥混凝土路面养护中的

22、应用 J.山西交通科技,2 0 18(0 6):2 5-2 7.3梁若翔,石红星,董月振.超薄磨耗层在隧道混凝土路面养护中的应用 J.西部交通科技,2 0 15(0 3):5 7-6 1.4 严慧.NovaChip超薄磨耗层在公路隧道水泥混凝土路面养护中的应用 D.哈尔滨:哈尔滨工业大学,2 0 13.5 Al-Qadi I L,Carpenter S H,Leng Z,et al.Tack Coat Optimiza-参考文献1马超.磷石膏水泥稳定碎石基层施工技术及其应用 J.运输经理世界,2 0 2 1(3 4):3 1-3 3.2吴尚峰,曹朋辉.水泥磷石膏稳定碎石材料在高速公路中的应用及

23、经济效益分析 J.低碳世界,2 0 2 1,11(11):114-116.3陈洁,董江峰,薛夜,等.磷石膏基水泥稳定碎石材料性能研究J.建材与装饰,2 0 2 0(19):5 2-5 3.4周明凯,张晓乔,陈潇,等.水泥磷石膏稳定碎石路面基层材料性能研究 J.公路,2 0 16,6 1(0 4):18 6-190.5李佳.半刚性基层沥青路面连续施工综合抗裂技术研究D.武汉:华中科技大学,2 0 15.6李佳,资建民,毛磊,等.磷石膏用作连续施工抗裂缝剂的机理研究 J.土木工程与管理学报,2 0 15,3 2(0 1):2 3-2 7.tion for HMA Overlays:Accelera

24、ted Pavement Test ReportR.Ilinois Center for Transportation,2009.6 Ge Z,Wang H,Zhang Q,et al.Class fiber reinforced asphaltmembrane for interlayer bonding between asphalt overlay andconcrete pavement J.Construction and Building Materials,2015,101:918-925.7王磊,王树杰.层间粘结对沥青路面剪切强度及疲劳性能影响研究 J.石油沥青,2 0 17,

25、3 1(0 5):2 7-3 2.8胡诗园.超薄沥青罩面在农村水泥路面加铺中的应用研究D.上海:同济大学,2 0 2 1.9吕泉.沥青与集料粘附性评价方法的研究 D.上海:同济大学,2 0 18.10 American Association of State Highway and TransportationOfficials.Standard Method of Test For Determining AsphaltBinder Bond Strength by Means of the Binder Bond Strength(BBS):T361-16(2020)S J.Washin

26、gton,D.C.,2020.11同济大学.梁式钢桥典型结构研究 R.2012.XIAO Meiqiang,YE Fen,HU Shiyuan(126)ZHANGLei,YING Peng,ZHUYaozhi(131)lected based on road geometry data,historical crash data and satellite point positioning data.The accident frequency prediction model basedon zero truncation negative binomial and the acciden

27、t severity prediction model based on multivariate logit were constructed respectively,which can effectively identify high-risk points on urban road traffic.The models have high accuracy and interpretability.In general,the pro-posed methods are supporting technologies for efficient traffic delicacy m

28、anagement measures.Key words:satellite point positioning data;urban roads;historical crash surrogate safety measures;static risk research and judgmentResearch on the Conversion and Application of ETC Gantry Data for Expressway in Traffic Control Work.LI Shuzhen(121)Abstract:On the basis of comparati

29、ve anaiysis of the substitution conditions,data conversion conditions,and system operation and mainte-nance levels between ETC gantry stations and traditional traffic control stations on highways,research is conducted on the site matching,vehi-cle type correspondence,data conversion,and interface tr

30、ansmission of ETC transaction data and traffic control data,and forms an intensivehighway traffic flow detection scheme,which provides references for the application of relevant ETC data traffic control analysis.Key words:ETC system;ETC gantry;traffic control station;data conversionResearch on Inter

31、layer Bonding Performance of Asphalt Ultra-thin Overlayer on Old Cement PavementAbstract:The interlayer bonding performance of the ultra-thin asphalt overlayer on the old cement pavement directly affects the service lifeof the overlay structure.The interlaminar bonding properties of several typical

32、waterproof adhesive materials and a permeable sealing materialwere studied by forming composite structure specimens,combined with interlayer pull-out tests and oblique shear tests.The test results showthat:under the optimal coating amount of each waterproof adhesive material,the order of pull-out st

33、rength is hot-melt composite modified as-phalt,SBS modified asphalt,70#matrix asphalt,G,modified emulsified asphalt.Coating with quick-drying Type penetrant F can improve thepull-out strength and interlayer shear strength of waterproof adhesive materials,does not change the optimum amount of coating

34、.Key words:old cement pavement;ultra-thin asphalt overlayer;interlayer bonding;waterproof bonding course;permeable sealing courseResearch on the Application of Anti-slip Surface Construction Technology of Asphalt PavementAbstract:In view of asphalt pavement anti-skid ability attenuation and high-spe

35、ed traffic safety problems,in this paper,the anti-skid treatmenttechnology models of four kinds of asphalt pavement are established,namely,finishing surface,micro-surface,shot blasting and covering.The im-provement effect and the attenuation of skid resistance were studied respectively.The results s

36、how that the composite thin layer coating technologywith high toughness resin is the best to improve the anti-skid performance of the original asphalt pavement;With the extension of traffic time,theskid resistance of the four asphalt pavement anti-skid treatment technologies has the same decay law.A

37、mong them,the composite high-toughnessresin thin-layer cladding technology has the least skid friction coefficient attenuation and the best lasting skid resistance.Key words:asphalt pavement;anti slip treatment technology;anti slip performance;attenuation amplitudeStudy on the Composition and Proper

38、ties of Cement Phosphogypsum Stabilized Crushed StoneAbstract:The effective utilization of phosphogypsum can effectively solve the problem of waste.To study the composition and performance ofcement phosphogypsum stabilized crushed stone,the grading relationship,influence of cement dosage,and road pe

39、rformance of cement phos-phogypsum stabilized crushed stone were studied through experimental research methods.The results indicate that the water stability perfor-mance of the unconfined compressive strength of cement phosphogypsum stabilized crushed stone increases first and then decreases with th

40、eincrease of phosphogypsum content.At the same time,it was also found that phosphogypsum can not only effectively improves the shrinkageand cracking resistance of cement phosphogypsum stabilized crushed stone,but also increase the splitting strength,compressive rebound mod-ulus,and maximum dry shrin

41、kage strain of the stabilized crushed stone.Key words:cement phosphogypsum;aggregate grading;road performance;stability performanceExperimental Study on Vacuum Sealing Method for Measuring Void Content of Asphalt MixtureAbstract:Select two types of asphalt mixtures(AC-20 and SMA-13)as specimens,and

42、measuring the porosity of formed specimens with dif-ferent compaction times by the vacuum sealing method,and the results were compared and analyzed with the surface dry method and volumemethod.The test was repeated three times on the specimens to study the error of the repeated test of the vacuum se

43、aling method.By changingthe vacuum sealing state of the sealed specimen,the material and thickness of the sealing bag,the factors affecting the determination of asphaltmixture porosity by using the vacuum sealing method are studied.The results show that the measured values of the vacuum sealing meth

44、od arebetween the surface dry method and the volumetric method,and there is a good correlation between them;The average error of multiple mea-surements of porosity is 0.19%;The vacuum sealing state,sealing bag material,and thickness have an impact on the test results.The better thesealing state,the

45、smaller the error in the measured porosity:The better flexibility and strength of sealed bag,the smaller the error;The smallerthe thickness of the sealed bag,the smaller the error.Key words:vacuum sealing method;void rate;asphalt mixture;surface dry method;volumetric methodReview of the Application

46、and Discussion on the Long-life Potential of High Viscosity Modified Asphalt in ShanghaiHighwayAbstract:The implementation of carbon peaking and carbon neutrality has accelerated the demand for long-life pavement in China,and theresearch on integration of the structure and material of long-life pavement is of great importance.Based on the review of physical projects(Lu-:LIU Chengcheng(136):YE Fen,LIU Jiahui,WU Huairui(141)WANG Hanbing,LV Weimin,YAO Hongru,ZHANG Chuanping,ZHANG Zhen,WANG Shifeng(146)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 专业资料 > 其它

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2