收藏 分享(赏)

2023年中考冲刺代几综合问题基础.docx

上传人:13****k 文档编号:488504 上传时间:2023-04-04 格式:DOCX 页数:11 大小:26.18KB
下载 相关 举报
2023年中考冲刺代几综合问题基础.docx_第1页
第1页 / 共11页
2023年中考冲刺代几综合问题基础.docx_第2页
第2页 / 共11页
2023年中考冲刺代几综合问题基础.docx_第3页
第3页 / 共11页
2023年中考冲刺代几综合问题基础.docx_第4页
第4页 / 共11页
2023年中考冲刺代几综合问题基础.docx_第5页
第5页 / 共11页
2023年中考冲刺代几综合问题基础.docx_第6页
第6页 / 共11页
亲,该文档总共11页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、中考冲刺:代几综合问题(根底)中考冲刺:代几综合问题(根底) 一、选择题 1.(2023河北一模)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰RtABC,使BAC=90,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是() A B CD 2. 如图,在半径为1的O中,直径AB把O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CDAB,垂足为E,OCD的平分线交O于点P,设CE=x,AP=y,以下列图象中,最能刻画y与x的函数关系的图象是( ) 二、填空题 3. 将抛物线y12x2向右平移2个单位,得到抛物线的

2、图象如下列图,P是抛物线y2对称轴上的一个动点,直线xt平行于y轴,分别与直线yx、抛物线y2交于点A、B假设ABP是以点A或点B为直角顶点的等腰直角三角形,求满足的条件的t的值,那么t_ 4. (2023宝山区一模)如图,D为直角ABC的斜边AB上一点,DEAB交AC于E,如果AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC=8,tanA=,那么CF:DF=_ 三、解答题 5. 一个形如六边形的点阵.它的中心是一个点(算第一层)、第二层每边有两个点,第三层每边有三个点依次类推. (1)试写出第n层所对应的点数; (2)试写出n层六边形点阵的总点数; (3)如果一个六边形点阵共有

3、169个点,那么它一共有几层? 6. 如图,RtABC中,B=90,AC=10cm,BC=6cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以2cm/s的速度,沿AB向终点B移动;点Q以1cm/s的速度沿BC向终点C移动,其中一点到终点,另一点也随之停止连接PQ设动点运动时间为x秒 (1)用含x的代数式表示BQ、PB的长度; (2)当x为何值时,PBQ为等腰三角形; (3)是否存在x的值,使得四边形APQC的面积等于20cm2?假设存在,请求出此时x的值;假设不存在,请说明理由 7. 阅读理解:对于任意正实数a、b, 结论:在a+b2(a、b均为正实数)中,假设ab为定值p,那么a+

4、b2,只有当a=b时,a+b有最小值2 根据上述内容,答复以下问题: (1)假设m0,只有当m=_时,有最小值,最小值为_; (2)探究应用:A(-3,0)、B(0,-4),点P为双曲线()上的任一点,过点P作PC轴于点C,PD轴于点D,求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状 8. (深圳期末)如图,平面直角坐标系中,直线AB:y=x+3与坐标轴分别交于A、B两点,直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点 (1)直接写出A、B的坐标;A_,B_; (2)是否存在点P,使得AOP的周长最小?假设存在,请求出周长的最小值;假设不存在,请说明理由 (3)是否

5、存在点P使得ABP是等腰三角形?假设存在,请直接写出点P的坐标;假设不存在,请说明理由 9.如下列图,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,) (1)求抛物线的解析式; (2)在抛物线的对称轴上找到点M,使得M到D、B的距离之和最小,求出点M的坐标; (3)如果点P由点A出发沿线段AB以2cm/s的速度向点B运动,同时点Q由点B出发沿线段BC以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动设S=PQ2(cm2) 求出S与运动时间t之间的函数关系式,并写出t的取值范围;

6、当S=时,在抛物线上存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形, 求出点R的坐标 10:抛物线yx22xm-2交y轴于点A(0,2m-7)与直线yx交于点B、C(B在右、C在左) (1)求抛物线的解析式; (2)设抛物线的顶点为E,在抛物线的对称轴上是否存在一点F,使得,假设存在,求出点F的坐标,假设不存在,说明理由; (3)射线OC上有两个动点P、Q同时从原点出发,分别以每秒个单位长度、每秒2个单位长度的速度沿射线OC运动,以PQ为斜边在直线BC的上方作直角三角形PMQ(直角边分别平行于坐标轴),设运动时间为t秒,假设PMQ与抛物线yx22xm-2有公共点,求t的取值范围 11

7、. 在平面直角坐标系中,抛物线经过A(3,0)、B(4,0)两点,且与y轴交于点C,点D在x轴的负半轴上,且BDBC,有一动点P从点A出发,沿线段AB以每秒1个单位长度的速度向点B移动,同时另一个动点Q从点C出发,沿线段CA以某一速度向点A移动. (1)求该抛物线的解析式; (2)假设经过t秒的移动,线段PQ被CD垂直平分,求此时t的值; (3)该抛物线的对称轴上是否存在一点M,使MQMA的值最小?假设存在,求出点M的坐标;假设不存在,请说明理由. 答案与解析 【答案与解析】一、选择题 1【答案】A. 【解析】作ADx轴,作CDAD于点D,假设右图所示, 由可得,OB=x,OA=1,AOB=9

8、0,BAC=90,AB=AC,点C的纵坐标是y, ADx轴,DAO+AOD=180,DAO=90, OAB+BAD=BAD+DAC=90,OAB=DAC, 在OAB和DAC中, , OABDAC(AAS), OB=CD,CD=x, 点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1, y=x+1(x0) 应选A 2【答案】A 【解析】 解:连接OP, OC=OP, OCP=OPC OCP=DCP,CDAB, OPC=DCP OPCD POAB OA=OP=1, AP=y=(0x1) 应选 A 二、填空题 3. 【答案】1或3或; 【解析】 解:抛物线y1=2x2向右平移2个单位, 抛物

9、线y2的函数解析式为y=2(x-2)2=2x2-8x+8, 抛物线y2的对称轴为直线x=2, 直线x=t与直线y=x、抛物线y2交于点A、B, 点A的坐标为(t,t),点B的坐标为(t,2t2-8t+8), AB=|2t2-8t+8-t|=|2t2-9t+8|,AP=|t-2|, APB是以点A或B为直角顶点的等腰三角形, |2t2-9t+8|=|t-2|, 2t2-9t+8=t-2 2t2-9t+8=-(t-2) , 整理 得,t2-5t+5=0, 解得 整理 得,t2-4t+3=0, 解得 t1=1,t2=3, 综上所述,满足条件的 t值为:1或3或 故答案为: 1或3或 4. 【答案】6

10、:5 【解析】DEAB,tanA,DE=AD, RtABC中,AC8,tanA, BC=4,AB=4, 又AED沿DE翻折,A恰好与B重合, AD=BD=2,DE=, RtADE中,AE=5,CE=85=3, RtBCE中,BE=5, 如图,过点C作CGBE于G,作DHBE于H,那么 RtBDE中,DH=2, RtBCE中,CG=, CGDH,CFGDFH, = 故答案为:6:5 三、解答题 5. 【答案与解析】 解:(1)第n层上的点数为6(n1)(n2) (2)n层六边形点阵的总点数为1612186(n1)13n(n1)1 (3)令3n(n1)1169,得n8.所以,它一共是有8层 6.

11、【答案与解析】 解: (1)B=90,AC=10,BC=6, AB=8 BQ=x,PB=8-2x; (2)由题意,得 8-2x=x, x=. 当x=时,PBQ为等腰三角形; (3)假设存在x的值,使得四边形APQC的面积等于20cm2, 那么, 解得 x1=x2=2 假设成立,所以当 x=2时,四边形APQC面积的面积等于20cm2 7. 【答案与解析】 解: (1),; (2)探索应用:设P(,),那么C(,0),D(0,), CA,DB=+4, S四边形ABCD=CADB=(x+3) (+4), 化简得:S=2(x+)+12, x0,0,x+2=6,只有当x=时,即x=3,等号成立. S2

12、6+12=24, S四边形ABCD有最小值是24. 此时,P(3,4),C(3,0),D(0,4),AB=BC=CD=DA=5, 四边形是菱形. 8. 【答案与解析】 解:(1)当x=0时,y=3即A 点坐标是(0,3), 当y=0时,x+3=0,解得x=4,即B点坐标是(4,0); (2)存在这样的P,使得AOP周长最小 作点O关于直线x=1的对称点M, M点坐标(2,0)连接AM交直线x=1于点P, 由勾股定理,得AM= 由对称性可知OP=MP,CAOP=AO+OP+AP=AO+MP+AP=AO+AM=3+; (3)设P点坐标为(1,a), 当AP=BP时,两边平方得,AP2=BP2,12+(a3)2=(14)2+a2 化简,得6a=1 解得a=即P1(1,); 当AP=AB=5时,两边平方得,AP2=AB2,12+(a3)2=52 化简,得a26a15=0 解得a=32,即P2(1,3+2),P3(1,32); 当BP=AB=5时,两边平方得,BP2=AB2,即(14)2+a2=52 化简,得a2=16 解得a=4,即P4(1,4),P5(1,4) 综上所述:P1(1,);P2(1,3+2),P3(1,32);P4(1,4),P5(1,4) 9. 【答案与解析】 解: (1)据题意可知:A(0,2)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2