收藏 分享(赏)

2023年中考数学专题复习题及解析1120讲6.docx

上传人:13****k 文档编号:488597 上传时间:2023-04-04 格式:DOCX 页数:31 大小:752.26KB
下载 相关 举报
2023年中考数学专题复习题及解析1120讲6.docx_第1页
第1页 / 共31页
2023年中考数学专题复习题及解析1120讲6.docx_第2页
第2页 / 共31页
2023年中考数学专题复习题及解析1120讲6.docx_第3页
第3页 / 共31页
2023年中考数学专题复习题及解析1120讲6.docx_第4页
第4页 / 共31页
2023年中考数学专题复习题及解析1120讲6.docx_第5页
第5页 / 共31页
2023年中考数学专题复习题及解析1120讲6.docx_第6页
第6页 / 共31页
亲,该文档总共31页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023年中考数学专题复习第十九讲 解直角三角形【根底知识回忆】锐角三角函数定义:w w w . 在REABC中,C=900, A、B、C的对边分别为a、b、c,那么A的正弦可表示为:sinA= ,A的余弦可表示为CBA= A的正切:tanA= ,它们弦称为A的锐角三角函数【名师提醒:1、sinA、cosA、tanA表示的是一个整体,是两条线段的比,没有,这些比值只与 有关,与直角三角形的 无关2、取值范围 sinA cosA 】二、特殊角的三角函数值:sincostan300450600【名师提醒:1、三个特殊角的三角函数值都是根据定义应用直角三角形性质算出来的,要在理解的根底上结合表格进行

2、记忆2、当 时,正弦和正切值随着角度的增大而 余弦值随着角度的增大而 3、几个特殊关系:sinA+cos2A= ,tanA=假设A+B=900,那么sinA= cosA.tanB= 】三、解直角三角形: 1、定义:由直角三角形中除直角外的 个元素,求出另外 个未知元素的过程叫解直角三角形 2、解直角三角形的依据:RTABC中,C900 三边分别为a、b、c三边关系: 两锐角关系 边角之间的关系:sinA cosA tanA sinB cosB tanB 【名师提醒:解直角三角形中的两个元素应至少有一个是 当没有直角三角形时应注意构造直角三角形,再利用相应的边角关系解决】3、解直角三角形应用中的

3、有关概念 仰角和俯角:如图:在用上标上仰角和俯角 坡度坡角:如图:斜坡AB的垂直度H和水平宽度L的比叫做坡度,用i表示,即i= 坡面与水平面得夹角为 用字母表示,那么i= 方位角:是指南北方向线与目标方向所成的小于900的水平角 如图:OA表示 OB表示 OC表示 也可称西南方向利用解直角三角形知识解决实际问题的一般步骤: 把实际问题抓化为数字问题画出平面图形,转化为解直角三角形的问题根据条件特点选取适宜的锐角三角函数去解直角三角形解数学问题答案,从而得到实际问题的答案【名师提醒:在解直角三角形实际应用中,先构造符合题意的三角形,解题的关键是弄清在哪个直角三角形中用多少度角的哪种锐角三角函数解

4、决】【重点考点例析】 考点一:锐角三角函数的概念例1 2023内江如以下图,ABC的顶点是正方形网格的格点,那么sinA的值为A B C D思路分析:利用网格构造直角三角形,根据锐角三角函数的定义解答解:如图:连接CD交AB于O,根据网格的特点,CDAB,在RtAOC中,CO=;AC=;那么sinA=应选B点评:此题考查了锐角三角函数的定义和勾股定理,作出辅助线CD并利用网格构造直角三角形是解题的关键对应训练12023贵港在平面直角坐标系中,点A2,1和点B3,0,那么sinAOB的值等于A B C D1A考点:锐角三角函数的定义;坐标与图形性质;勾股定理专题:计算题分析:过A作ACx轴于C,

5、利用A点坐标为2,1可得到OC=2,AC=1,利用勾股定理可计算出OA,然后根据正弦的定义即可得到sinAOB的值解答:解:如图过A作ACx轴于C, A点坐标为2,1,OC=2,AC=1,OA=,sinAOB=应选A点评:此题考查了正弦的定义:在直角三角形中,一个锐角的正弦等于这个角的对边与斜边的比值也考查了点的坐标与勾股定理 考点二:特殊角的三角函数值例2 2023孝感计算:cos245+tan30sin60= 1思路分析:将cos45=,tan30= ,sin60= 代入即可得出答案解:cos245+tan30sin60=+=+=1故答案为:1点评:此题考查了特殊角的三角函数值,属于根底题

6、,熟练记忆一些特殊角的三角函数值是解答此题的关键对应训练2023南昌计算:sin30+cos30tan60思路分析:分别把各特殊角的三角函数代入,再根据二次根式混合运算的法那么进行计算即可解:原式=2点评:此题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键 考点三:化斜三角形为直角三角形例3 2023安徽如图,在ABC中,A=30,B=45,AC=2,求AB的长6思路分析:过C作CDAB于D,求出BCD=B,推出BD=CD,根据含30度角的直角三角形求出CD,根据勾股定理求出AD,相加即可求出答案解: 过C作CDAB于D,ADC=BDC=90,B=45,BCD=B=45

7、,CD=BD,A=30,AC=2,CD=,BD=CD=,由勾股定理得:AD=3,AB=AD+BD=3+,答:AB的长是3+点评:此题考查了勾股定理,等腰三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,关键是构造直角三角形,题目具有一定的代表性,是一道比拟好的题目对应训练32023重庆如图,在RtABC中,BAC=90,点D在BC边上,且ABD是等边三角形假设AB=2,求ABC的周长结果保存根号3考点:解直角三角形;三角形内角和定理;等边三角形的性质;勾股定理专题:计算题分析:根据等边三角形性质求出B=60,求出C=30,求出BC=4,根据勾股定理求出AC,相加即可求出答案解答:解

8、:ABD是等边三角形,B=60,BAC=90,C=180-90-60=30,BC=2AB=4,在RtABC中,由勾股定理得:AC=,ABC的周长是AC+BC+AB=2+4+2=6+2答:ABC的周长是6+2点评:此题考查了勾股定理,含30度角的直角三角形,等边三角形性质,三角形的内角和定理等知识点的应用,主要培养学生运用性质进行推理和计算的能力,此题综合性比拟强,是一道比拟好的题目考点四:解直角三角形的应用例4 2023张家界黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中B=D=90,AB=BC=15千米,CD=千米,请据此解答如下问题:1求

9、该岛的周长和面积;结果保存整数,参考数据1.414,1.73 ,2.452求ACD的余弦值考点:解直角三角形的应用分析:1连接AC,根据AB=BC=15千米,B=90得到BAC=ACB=45 AC=15千米,再根据D=90利用勾股定理求得AD的长后即可求周长和面积;2直接利用余弦的定义求解即可解:1连接ACAB=BC=15千米,B=90BAC=ACB=45 AC=15千米 又D=90AD=千米 周长=AB+BC+CD+DA=30+3+12=30+4.242+20.78455千米面积=SABC+18 6 157平方千米 2cosACD= 点评:此题考查了解直角三角形的应用,与时事相结合提高了同学

10、们解题的兴趣,解题的关键是从实际问题中整理出直角三角形并求解对应训练62023益阳超速行驶是引发交通事故的主要原因之一上周末,小明和三位同学尝试用自己所学的知识检测车速如图,观测点设在A处,离益阳大道的距离AC为30米这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,BAC=751求B、C两点的距离;2请判断此车是否超过了益阳大道60千米/小时的限制速度?计算时距离精确到1米,参考数据:sin750.9659,cos750.2588,tan753.732,1.732,60千米/小时16.7米/秒考点:解直角三角形的应用专题:计算题分析:1由于A到BC的距离为30米,可

11、见C=90,根据75角的三角函数值求出BC的距离;2根据速度=路程时间即可得到汽车的速度,与60千米/小时进行比拟即可解答:解:1法一:在RtABC中,ACB=90,BAC=75,AC=30,BC=ACtanBAC=30tan75303.732112米法二:在BC上取一点D,连接AD,使DAB=B,那么AD=BD,BAC=75,DAB=B=15,CDA=30,在RtACD中,ACD=90,AC=30,CDA=30,AD=60,CD=30,BC=60+30112米 2此车速度=1128=14米/秒16.7 米/秒=60千米/小时此车没有超过限制速度点评:此题考查了解直角三角形的应用,理解正切函数

12、的意义是解题的关键【聚焦山东中考】12023济南如图,在84的矩形网格中,每格小正方形的边长都是1,假设ABC的三个顶点在图中相应的格点上,那么tanACB的值为A B C D31A考点:锐角三角函数的定义专题:网格型分析:结合图形,根据锐角三角函数的定义即可求解解答:解:由图形知:tanACB=,应选A点评:此题考查了锐角三角函数的定义,属于根底题,关键是掌握锐角三角函数的定义22023滨州把ABC三边的长度都扩大为原来的3倍,那么锐角A的正弦函数值A不变 B缩小为原来的 C扩大为原来的3倍 D不能确定2A分析:由于ABC三边的长度都扩大为原来的3倍所得的三角形与原三角形相似,得到锐角A的大小没改变,根据正弦的定义得到锐角A的正弦函数值也不变解答:解:因为ABC三边的长度都扩大为原来的3倍所得的三角形与原三角形相似,所以锐角A的大小没改变,所以锐角A的正弦函数值也不变应选A点评:此题考查了正弦的定义:在直角三角形中,一个锐角的正弦等于它的对边与斜边的比值也考查了相似三角形的判定与性质32023烟台计算:tan45+ cos45= 232考点:特殊角的三角函数值分析:首先把特殊角的三角函数值代入,然后进行二次根式的计算即可求解解答:解:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2