1、图形的旋转第二课时随堂检测1、图形的平移、旋转、轴对称中,其相同的性质是_.2、如图,将OAB绕点0按逆时针方面旋转至0AB,使点B恰好落在边AB上AB=4cm,BB=lcm,那么AB长是_cm3、将平行四边形ABCD旋转到平行四边形ABCD的位置,以下结论错误的选项是 A、AB=AB B、ABAB C、A=A D、ABCABC4、观察以以下图形,它可以看作是什么“根本图形通过怎样的旋转而得到的?典例分析如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系分析:此题虽然可以用全等三角形的知识解决,但不符合题目
2、要求.要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明解:四边形ABCD、四边形AKLM是正方形,AB=AD,AK=AM,且BAD=KAM为旋转角且为90,ADM是以A为旋转中心,BAD为旋转角由ABK旋转而成的BK=DM.课下作业拓展提高O1、如以下图,五角星的顶点是一个正五边形的五个顶点这个五角星可以由一个根本图形图中的阴影局部绕中心O至少经过_次旋转而得到,每一次旋转_度2、如图,在平面直角坐标系中,点A的坐标为(1,4),将线段OA绕点O顺时针旋转90得到线段OA,那么点A的坐标是_.3、以以下图中的两个正方形的边长相等,请你指出可以通过绕点O旋转而相互得到的图形并说明旋
3、转的角度.4、过等边三角形的中心O向三边作垂线,将这个三角形分成三局部.这三局部之间可以看作是怎样移动相互得到的?你知道它们之间有怎样的等量关系吗?5、如图,A、B是线段MN上的两点,以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成ABC,设1求的取值范围;2假设ABC为直角三角形,求的值.CABNM体验中考1、2023年,泸州如图l,P是正ABC内的一点,假设将BCP绕点B旋转到BAP,那么PBP的度数是 A、45 B、60 C、90 D、1202、2023年,株洲如图,在中,将绕点沿逆时针方向旋转得到1线段的长是_,的度数是_;2连结,求证:四边形是平行四
4、边形参考答案:随堂检测1、图形的形状、大小不变,只改变图形的位置.2、3.3、B.4、解:图形(1)是通过一条线段绕点O旋转360而得到的;图形(2)可以看作是“一个RtABC绕线段AC旋转360而得到的;图形(3)将矩形ABCD绕AD旋转一周而得到的.课下作业拓展提高1、4,72.2、(4,1).3、解:OAE和OBF,OEB和OFC,OAB和OBC,旋转的角度为90.4、解:旋转120相互得到,它们是全等四边形,它们的面积相等,对应线段相等,对应角相等.5、解:1在ABC中,解得2假设AC为斜边,那么,即,无解CABNMD假设AB为斜边,那么,解得,满足假设BC为斜边,那么,解得,满足或体验中考1、B. ABC是等边三角形,ABC=60,当BCP绕点B旋转到BAP时,旋转角为ABC或PBP,PBP=60.2、解:16,135;2,又,四边形是平行四边形