收藏 分享(赏)

2023年兴义地区重点高考一轮复习教学案离散型随机变量的分布列高中数学.docx

上传人:sc****y 文档编号:801010 上传时间:2023-04-15 格式:DOCX 页数:9 大小:223.87KB
下载 相关 举报
2023年兴义地区重点高考一轮复习教学案离散型随机变量的分布列高中数学.docx_第1页
第1页 / 共9页
2023年兴义地区重点高考一轮复习教学案离散型随机变量的分布列高中数学.docx_第2页
第2页 / 共9页
2023年兴义地区重点高考一轮复习教学案离散型随机变量的分布列高中数学.docx_第3页
第3页 / 共9页
2023年兴义地区重点高考一轮复习教学案离散型随机变量的分布列高中数学.docx_第4页
第4页 / 共9页
2023年兴义地区重点高考一轮复习教学案离散型随机变量的分布列高中数学.docx_第5页
第5页 / 共9页
2023年兴义地区重点高考一轮复习教学案离散型随机变量的分布列高中数学.docx_第6页
第6页 / 共9页
亲,该文档总共9页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、10.8离散型随机变量的分布列一、明确复习目标了解离散型随机变量的意义,会求出某些简单的离散型随机变量的分布列二建构知识网络随机变量:随机试验的结果可以用一个变量来表示,这样的变量的随机变量,记作等;假设是随机变量,=a+b,其中是常数,那么也是随机变量.如出租车里程与收费.2. 离散型随机变量:随机变量可能取的值,可以按一定顺序一一列出连续型随机变量:随机变量可以取某一区间内的一切值。离散型随机变量的研究内容:随机变量取什么值、取这些值的多与少、所取值的平均值、稳定性等。3. 离散型随机变量的分布列:设离散型随机变量可能取的值为x1,x2,xi,且P(=xi)=pi,那么称x1x2xipp1

2、p2pi为随机变量的分布列。(1)离散型随机变量的分布列的两个性质:P(=xi)=pi0;p1+p2+=1(2)求分布列的方法步骤:确定随机变量的所有取值; 计算每个取值的概率并列表。4. 二项分布:在n次独立重复试验中,事件A发生的次数是一个随机变量,其所有可能取的值为0,1,2,3,n,并且P(=k)=Cnkpkqn-k其中k=0,1,2,n,p+q=1,即分布列为01knPCn0p0qn Cn1p1qn-1 Cnkpkqn-k Cnnpnq0 称这样的随机变量服从参数为n和p的二项分布,记作:.5.几何分布:如:某射击手击中目标的概率为p,那么从射击开始到击中目标所需次数的分布列为 12

3、3kPpqpq2pqk-1p这种种分布列叫几何分布,记作g(k,p)= qk-1p,其中k0,1,2,,q=1-p三、双基题目练练手1.袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量,那么所有可能取值的个数是 ( )A.5 B.9 C.10 D.252.随机变量的分布列为P=k=,k=1,2,那么P24等于A.B.C.D.3.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了次球,那么P=12等于A.C102B.C92C.C92D.C924.设随机变量

4、B2,p,B4,p,假设P1=,那么P1=_5.现有一大批种子,其中优质良种占30%,从中任取5粒,记为5粒中的优质良种粒数,那么的分布列是_.简答:1-3.BAB; 3.第12次为红球,前11次中9次红球,P=12=C92; 4.P1=1P1=1Cp01p2=,p=,P1=1P=0=1C04=1=答.5.B5,03,的分布列是P=k=C03k075k,k=0,1,5答案:P=k=C03k075k,k=0,1,5四、经典例题做一做【例1】(2023天津)某射手进行射击训练,假设每次射击击中目标的概率为,且各次射击的结果互不影响。1求射手在3次射击中,至少有两次连续击中目标的概率用数字作答;2求

5、射手第3次击中目标时,恰好射击了4次的概率用数字作答;3设随机变量表示射手第3次击中目标时已射击的次数,求的分布列解:记“射手射击1次,击中目标为事件,那么在3次射击中至少有两次连续击中目标的概率 解:射手第3次击中目标时,恰好射击了4次的概率解:由题设,“=k的概率为 且所以,的分布列为:34kP【例2】2023春安微盒中有10个灯泡,其中8个正品,2个次品。需要从中取出2个正品,每次从中取出1个,取出后不放回,直到取出2个正品为止,设为取出的次数,求的分布列及E。解:;。的分布列表略E。提炼方法:求分布列的两个关键1.确定随机变量的取值;2.计算取每个值的概率.【例3】盒中装有一打12个乒

6、乓球,其中9个新的,3个旧的用过的球即为旧的,从盒中任取3个使用,用完后装回盒中,此时盒中旧球个数是一个随机变量,求的分布列分析:从盒中任取3个,这3个可能全是旧的,2个旧的1个新的,1个旧的2个新的或全是新的,所以用完放回盒中,盒中旧球个数可能是3个,4个,5个,6个,即可以取3,4,5,6解:的所有可能取值为3,4,5,6P=3=;P=4=;P=5=;P=6=的分布列表略【例4】某人骑车从家到学校的途中有5个路口,假设他在各个路口遇到红灯的事件是相互独立的,且概率均为.(1)求此人在途中遇到红灯的次数的分布列; (2)求此人首次遇到红灯或到达目的地而停车时所经过的路口数的分布列; (3)此

7、人途中至少遇到一次红灯的概率.解:(1)由,故分布列,.(2)=k(k=0,1,2,3,4)表示事件:前k个路口均为绿灯,第k+1个路口为红灯;=5表示5个路口均为绿灯.故所求的分布列为:, .3提炼方法:要能从所给的条件中看出特殊的分布,如此题中.【研讨.欣赏】某人参加射击,击中目标的概率是设为他射击6次击中目标的次数,求随机变量的分布列;设为他第一次击中目标时所需要射击的次数,求的分布列;假设他连续射击6次,设为他第一次击中目标的次数,求的分布列;假设他只有6颗子弹,假设他击中目标,那么不再射击,否那么子弹打完,求他射击次数的分布列解:随机变量服从二项分布,而的取值为0,1,2,3,4,5

8、,6,那么故的分布列为:0123456P设表示他前次未击中目标,而在第次射击时击中目标,那么的取值为全体正整数1,2,3,那么的分布列为1234 kP设=k+1表示前k次未击中目标,而第k+1次击中目标,的取值为0,1,2,3,4,5,当=6时,表示射击6次均未击中目标那么而 的分布列为0123456P设,表示前次未击中,而第次击中,;而表示前5次未击中,第6次可以击中,也可以未击中, 的分布列为:123456P五提炼总结以为师1.会根据实际问题用随机变量正确表示某些随机试验的结果与随机事件;2.熟练应用分布列的两个根本性质;3.能熟练运用二项分布计算有关随机事件的概率。4.求离散型随机变量的

9、分布列的步骤:首先确定随机变量的取值,明确每个值的意义;利用概率及排列组合知识,求出每个取值的概率;按标准形式写出分布列,并用分布列的性质验证同步练习 10.8离散型随机变量的分布列 【选择题】1. 某座大桥一天经过的车辆数为某无线电台一天收到的寻呼次数为一天之内的温度为一射手射击,击中目标得1分,未击中目标得0分,用表示射手一次射击中的得分.上述问题中的是离散型随机变量的是 ( )A.B.C.D.2.随机变量的所有可能取值为1、2、3、10,且P=k=ak, (k=1、2、10)那么a的值为 A B. C.110 D.553.在15个村庄中,有7个村庄交通不方便,现从中任选10个村庄,用表示

10、这10个村庄中交通不方便的村庄数,以下概率中等于的是 ( )A.P(=2) B.P(2) C.P(=4) D.P(4)【填空题】4.现有一大批种子,其中优质良种占30%,从中任取5粒,记为5粒中的优质良种粒数,那么的分布列是_.5.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量,那么P6=_.6.一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以表示取出的三只球中的最小号码,那么随机变量的取值为_,=2的概率为_.练习简答:1-3.BBC; 4.P=k=C0.3k0.75k,k=0,1,55. P6=P=4+P=6=+=.6.随

11、机变量的可能取值为1,2,3。【解答题】7.(2023广东) 某运发动射击一次所得环数x的分布列如下:x0-678910p00. 20. 30. 30. 2现进行两次射击,以该运发动两次射击中最高环数作为他的成绩,记为 ()求该运发动两次都命中7环的概率;()求分布列;() 求的数学希望 解:()求该运发动两次都命中7环的概率为;() 的可能取值为7, 8 ,9 , 10 分布列为78910P004021039036() 的数学希望为8. 在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任

12、抽2张,求:该顾客中奖的概率;该顾客获得的奖品总价值元的概率分布列.思路分析:随机取出2张奖券奖品总价值的可能情况有:0,10,20,50,60,求出取每一个值时的概率,列出分布列,根据离散型随机变量的期望与方差的概念、公式及性质解答.解:,即该顾客中奖的概率为.的所有可能值为:0,10,20,50,60元. 故有分布列:010205060P9.金工车间有10台同类型的机床,每台机床配备的电动机功率为10 kW,每台机床工作时,平均每小时实际开动12 min,且开动与否是相互独立的现因当地电力供给紧张,供电部门只提供50 kW的电力,这10台机床能够正常工作的概率为多大在一个工作班的8 h内,不能正常工作的时间大约是多少解:设10台机床中实际开动的机床数为随机变量,由于机床类型相同,且机床的开动与否相互独立,因此B10,p其中p是每台机床开动的概率,由题意p=从而P=k=Ck10k,k=0,1,2,1050 kW电力同时供给5台机床开动,因而10台机床同时开动的台数不超过5台时都可以正常工作,这一事件的概率为P5,P5=C10+C9+C28+C37+C46+C550.994因此,在电力供给为50 kW的条件下,机床不能正常工作的概率仅约

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 资格与职业考试 > 其它

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2