1、学校 班级 姓名 考试号 座位号 密 封 线 20232023学年度第一学期期中考试九 年 级 数 学 试 题(考试时间:150分钟 总分值150分) 成绩 一、选择题(每题3分,共24分,请将答案填入相应的表格内)题号12345678答案1假设二次根式有意义,那么x的取值范围为 Ax1Bx1CxlD全体实数2化简的结果是A3B3CD3关于x的一元二次方程的一个根是0,那么a的值为( )A 1 B-1 C1或-1 D04如右图,在菱形ABCD中,对角线AC=4,BAD=120,那么菱形ABCD的周长为A20B18C16D155以下语句中,正确的选项是 ( )A、同一平面上三点确定一个圆;B、三
2、角形的外心是三角形三边中垂线的交点;C、三角形的外心到三角形三边的距离相等;D、菱形的四个顶点在同一个圆上6如图,AB是O的直径,点C、D在O上,ODAC, 第 6 题BODCA第7题以下结论错误的选项是 ( )ABODBAC BBODCOD CBADCAD DCD 7如图,AB是O的直径,ACD=150,那么BAD的度数为 ( ) A. 750 B.720 C . 70008某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数为6,10,5,3,4,8,4,这组数据的中位数和极差分别是A4,7B7,5C5,7D3,7二、填空题(每题3分,共30分)9计算:_.左以
3、下列图,RtABC中,C90A=36,以C为圆心,CB为半径的圆交AB于P,那么弧BP的度数是_.11. 如右以下列图,ABC内接于0,B=OAC, OA = 4cm,那么AC= cm.CAPPB 12甲、乙两人5次射击命中的环数如下:甲: 7 9 8 6 10 乙: 7 8 9 8 8那么这两人5次射击命中的环数的平均数,方差 。( 比较大小)13如图,DE是ABC的中位线,假设ADE的周长是18, 那么ABC的周长是 .14如图,菱形ABCD的一个内角,对角线AC、BD相交于点O,点E在AB上,且,那么=度15如图,在梯形ABCD中,DCAB,AB=90。假设AB=10, AD=4,DC=
4、5,那么梯形ABCD的面积为 。16如图,在平行四边形ABCD中,E是对角线BD上的点,且EFAB,DE:EB=2:3,EF=4,那么CD的长为_。(第18题)xyOA1A2A3l2l1l3142317、如图,量角器放在BAC的上面,那么BAC .18如图,在平面直角坐标系中,点A1是以原点O为圆心,半径为2的圆与过点(0,1)且平行于x轴的直线l1的一个交点;点A2是以原点O为圆心,半径为3的圆与过点(0,2)且平行于x轴的直线l2的一个交点;按照这样的规律进行下去,点A20的横坐标为 三、解答以下各题19计算或化简:(每题4分,共8分)(2) 20解方程(每题5分,共10分)x2-4x+1
5、=0(用配方法)21(此题8分)关于x的一元二次方程有两个不相等的实数根求k的取值范围请选择一个k的负整数值,并求出方程的根22. (此题8分)如图,AB是O的一条弦,DE是O的直径且于点C, (1)假设,求AB的长; (2)求证:。CBDEOA阿第22题23(此题10分)如图,直角坐标系中,A(0,4)、B(4,4)、C(6,2),(1)写出经过A、B、C三点的圆弧所在圆的圆心M的坐标:(_,_);(2)判断点D(5,-2)与圆M的位置关系.24(此题10分)某工厂甲、乙两名工人参加操作技能培训现分别从他们在培训期间参加的假设干次测试成绩中随机抽取8次,记录如下:甲9582888193798
6、478乙8392809590808575请你计算这两组数据的平均数、中位数、方差;现要从中选派一人参加操作技能比赛,根据中计算结果,你认为选派哪名工人参加适宜?请说明理由25(此题10分)如图,在菱形ABCD中,A=60,=4,O为对角线BD的中点,过O点作OEAB,垂足为E求ABD 的度数;求线段的长26(此题10分)如图, 在平面直角坐标系中, 点(0,8), 点(6 , 8 ).只用直尺(没有刻度)和圆规, 求作一个点,使点同时满足以下两个条件(要求保存作图痕迹, 不必写出作法): 点P到,两点的距离相等;点P到的两边的距离相等. 在作出点后, 在x轴的正半轴上求一点M,使POM是等腰三
7、角形。(直接写出符合条件的点M坐标)27(此题10分)某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5 000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.当每间商铺的年租金定为13万元时,能租出多少间?当每间商铺的年租金定为多少万元时,该公司的年收益(收益租金各种费用)为275万元?28.(此题12分)如图(1),形如三角板的ABC中,ACB=90,ABC=45,BC=12cm,形如矩形量角器的半圆O的直径DE=12cm,矩形DEFG的宽EF=6cm,矩形量角器以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在BC所在的直线上,设运动时间为x(s),矩形量角器和ABC的重叠局部的面积为S(cm2).当x=0(s)时,点E与点C重合.(1)当x=3时,如图(2),S= cm2,当x=6时,S= cm2,当x=9时,S= cm2;(2)当3x6时,求S关于x的函数关系式;(3)思考:当3x6时,是否存在某一x的值,使得S=46,并求出此时x的值(4)当x为何值时, ABC的斜边所在的直线与半圆O所在的圆相切?