收藏 分享(赏)

2023年高考数学必胜秘诀六不等式doc高中数学.docx

上传人:la****1 文档编号:877968 上传时间:2023-04-15 格式:DOCX 页数:4 大小:279.16KB
下载 相关 举报
2023年高考数学必胜秘诀六不等式doc高中数学.docx_第1页
第1页 / 共4页
2023年高考数学必胜秘诀六不等式doc高中数学.docx_第2页
第2页 / 共4页
2023年高考数学必胜秘诀六不等式doc高中数学.docx_第3页
第3页 / 共4页
2023年高考数学必胜秘诀六不等式doc高中数学.docx_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、高考数学必胜秘诀在哪?概念、方法、题型、易误点及应试技巧总结六、不等式1、不等式的性质:(1)同向不等式可以相加;异向不等式可以相减:假设,那么(假设,那么),但异向不等式不可以相加;同向不等式不可以相减;(2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:假设,那么(假设,那么);(3)左右同正不等式:两边可以同时乘方或开方:假设,那么或;(4)假设,那么;假设,那么。如(1)对于实数中,给出以下命题:; ;,那么。其中正确的命题是_(答:);(2),那么的取值范围是_(答:);(3),且那么的取值范围是_(答:)2. 不等式大小比较的常用方法:(1)作差

2、:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。其中比较法(作差、作商)是最根本的方法。如(1)设,比较的大小(答:当时,(时取等号);当时,(时取等号);(2)设,试比较的大小(答:);(3)比较1+与的大小(答:当或时,1+;当时,1+;当时,1+)3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小这17字方针。如(1)以下命题中正确的选项是A、的最小值是2 B、的最小值是2 C、的最大

3、值是 D、的最小值是(答:C);(2)假设,那么的最小值是_(答:);(3)正数满足,那么的最小值为_(答:);4.常用不等式有:(1)(根据目标不等式左右的运算结构选用) ;(2)a、b、cR,(当且仅当时,取等号);(3)假设,那么(糖水的浓度问题)。如如果正数、满足,那么的取值范围是_(答:)5、证明不等式的方法:比较法、分析法、综合法和放缩法(比较法的步骤是:作差(商)后通过分解因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论。).常用的放缩技巧有: 如(1),求证: ;(2) ,求证:;(3),且,求证:;(4)假设a、b、c是不全相等的正数,求证:;(5),求证:;(6

4、)假设,求证:;(7),求证:;(8)求证:。6.简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成假设干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现的符号变化规律,写出不等式的解集。如(1)解不等式。(答:或);(2)不等式的解集是_(答:或);(3)设函数、的定义域都是R,且的解集为,的解集为,那么不等式的解集为_(答:);(4)要使满足关于的不等式(解集非空)的每一个的值至少满足不等式中的一个,那么实数的取值范围是_.(答:)7.分式不等式的解法:分式不等式的

5、一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。如(1)解不等式(答:);(2)关于的不等式的解集为,那么关于的不等式的解集为_(答:).8.绝对值不等式的解法:(1)分段讨论法(最后结果应取各段的并集):如解不等式(答:);(2)利用绝对值的定义;(3)数形结合;如解不等式(答:)(4)两边平方:如假设不等式对恒成立,那么实数的取值范围为_。(答:)9、含参不等式的解法:求解的通法是“定义域为前提,函数增减性为根底,分类讨论是关键注意解完之后要写上:“综上,原不等

6、式的解集是。注意:按参数讨论,最后应按参数取值分别说明其解集;但假设按未知数讨论,最后应求并集. 如(1)假设,那么的取值范围是_(答:或);(2)解不等式(答:时,;时,或;时,或)提醒:(1)解不等式是求不等式的解集,最后务必有集合的形式表示;(2)不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。如关于的不等式 的解集为,那么不等式的解集为_(答:(1,2)11.含绝对值不等式的性质:同号或有;异号或有.如设,实数满足,求证:12.不等式的恒成立,能成立,恰成立等问题:不等式恒成立问题的常规处理方式?(常应用函数方程思想和“别离变量法转化为最值问题,也可抓住所给不等式

7、的结构特征,利用数形结合法)1).恒成立问题假设不等式在区间上恒成立,那么等价于在区间上假设不等式在区间上恒成立,那么等价于在区间上如(1)设实数满足,当时,的取值范围是_(答:);(2)不等式对一切实数恒成立,求实数的取值范围_(答:);(3)假设不等式对满足的所有都成立,那么的取值范围_(答:(,);(4)假设不等式对于任意正整数恒成立,那么实数的取值范围是_(答:);(5)假设不等式对的所有实数都成立,求的取值范围.(答:)2). 能成立问题假设在区间上存在实数使不等式成立,那么等价于在区间上;假设在区间上存在实数使不等式成立,那么等价于在区间上的.如不等式在实数集上的解集不是空集,求实数的取值范围_(答:)3). 恰成立问题假设不等式在区间上恰成立, 那么等价于不等式的解集为;假设不等式在区间上恰成立, 那么等价于不等式的解集为.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 资格与职业考试 > 其它

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2