1、近世代数期末考试模拟试卷及答案班别_ 姓名_ 成绩_要求: 1、本卷考试形式为闭卷,考试时间为1.5小时。2、考生不得将装订成册的试卷拆散,不得将试卷或答题卡带出考场。3、考生只允许在密封线以外答题,答在密封线以内的将不予评分。4、考生答题时一律使用蓝色、黑色钢笔或圆珠笔(制图、制表等除外)。5、考生禁止携带手机、耳麦等通讯器材。否则,视为为作弊。6、不可以使用普通计算器等计算工具。一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。1、6阶有限群的任何子群一定不是( )。A、2阶B、3
2、 阶 C、4 阶 D、 6 阶2、设G是群,G有( )个元素,则不能肯定G是交换群。A、4个 B、5个 C、6个 D、7个3、有限布尔代数的元素的个数一定等于( )。A、偶数 B、奇数 C、4的倍数 D、2的正整数次幂4、下列哪个偏序集构成有界格( )A、(N,) B、(Z,) C、(2,3,4,6,12,|(整除关系) D、 (P(A),)5、设S3(1),(12),(13),(23),(123),(132),那么,在S3中可以与(123)交换的所有元素有( )A、(1),(123),(132) B、12),(13),(23) C、(1),(123) D、S3中的所有元素二、填空题(本大题共
3、10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。1、群的单位元是-的,每个元素的逆元素是-的。2、如果是与间的一一映射,是的一个元,则-。3、区间1,2上的运算的单位元是-。4、可换群G中|a|=6,|x|=8,则|ax|=。5、环Z8的零因子有 -。6、一个子群H的右、左陪集的个数-。7、从同构的观点,每个群只能同构于他/它自己的-。8、无零因子环R中所有非零元的共同的加法阶数称为R的-。9、设群中元素的阶为,如果,那么与存在整除关系为-。三、解答题(本大题共3小题,每小题10分,共30分)1、用2种颜色的珠子做成有5颗珠子项链,问可做出多少种不同的项链?2、
4、S1,S2是A的子环,则S1S2也是子环。S1+S2也是子环吗?3、设有置换,。1求和;2确定置换和的奇偶性。四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、一个除环R只有两个理想就是零理想和单位理想。2、M为含幺半群,证明b=a-1的充分必要条件是aba=a和ab2a=e。近世代数模拟试题 参考答案一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。1、C;2、C;3、D;4、D;5、A;二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正
5、确答案。错填、不填均无分。1、唯一、唯一;2、;3、2;4、24;5、;6、相等;7、商群;8、特征;9、;三、解答题(本大题共3小题,每小题10分,共30分)1、解 在学群论前我们没有一般的方法,只能用枚举法。用笔在纸上画一下,用黑白两种珠子,分类进行计算:例如,全白只1种,四白一黑1种,三白二黑2种,等等,可得总共8种。2、证 由上题子环的充分必要条件,要证对任意a,bS1S2 有a-b, abS1S2:因为S1,S2是A的子环,故a-b, abS1和a-b, abS2 ,因而a-b, abS1S2 ,所以S1S2是子环。S1+S2不一定是子环。在矩阵环中很容易找到反例:3、解: 1,;2
6、两个都是偶置换。四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、证明:假定是R的一个理想而不是零理想,那么a,由理想的定义,因而R的任意元这就是说=R,证毕。2、证 必要性:将b代入即可得。充分性:利用结合律作以下运算:ab=ab(ab2a)=(aba)b2a=ab2a=e,ba=(ab2a)ba=ab2 (aba)=ab2a=e,所以b=a-1。近 世 代 数 试 卷一、判断题(下列命题你认为正确的在题后括号内打“”,错的打“”;每小题1分,共10分)1、设与都是非空集合,那么。 ( f )2、设、都是非空集合,则到的每个映射都叫作二元运算。( f ) 3、只要是到的
7、一一映射,那么必有唯一的逆映射。 ( t )4、如果循环群中生成元的阶是无限的,则与整数加群同构。 (t )5、如果群的子群是循环群,那么也是循环群。 ( f )6、群的子群是不变子群的充要条件为。 ( t )7、如果环的阶,那么的单位元。 ( t )8、若环满足左消去律,那么必定没有右零因子。 ( t )9、中满足条件的多项式叫做元在域上的极小多项式。 ( f )10、若域的特征是无限大,那么含有一个与同构的子域,这里是整数环,是由素数生成的主理想。 ( f )二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分
8、,共10分)1、设和都是非空集合,而是到的一个映射,那么( 2 )集合中两两都不相同;的次序不能调换;中不同的元对应的象必不相同;一个元的象可以不唯一。2、指出下列那些运算是二元运算( 3 )4在整数集上,; 在有理数集上,;在正实数集上,;在集合上,。3、设是整数集上的二元运算,其中(即取与中的最大者),那么在中( 4 )3不适合交换律;不适合结合律;存在单位元;每个元都有逆元。4、设为群,其中是实数集,而乘法,这里为中固定的常数。那么群中的单位元和元的逆元分别是( 4 )0和; 1和0; 和; 和。5、设和都是群中的元素且,那么( 2 )1; ; ; 。6、设是群的子群,且有左陪集分类。如
9、果6,那么的阶( 3 )26; 24; 10; 12。7、设是一个群同态映射,那么下列错误的命题是(2 )4的同态核是的不变子群; 的不变子群的逆象是的不变子群;的子群的象是的子群; 的不变子群的象是的不变子群。8、设是环同态满射,那么下列错误的结论为( 4 )3若是零元,则是零元; 若是单位元,则是单位元;若不是零因子,则不是零因子;若是不交换的,则不交换。9、下列正确的命题是( 4 )1欧氏环一定是唯一分解环; 主理想环必是欧氏环;唯一分解环必是主理想环; 唯一分解环必是欧氏环。10、若是域的有限扩域,是的有限扩域,那么(1 )4; ; 。三、填空题(将正确的内容填在各题干预备的横线上,内
10、容填错或未填者,该空无分。每空1分,共10分)1、设集合;,则有 。2、如果是与间的一一映射,是的一个元,则 a 。3、设集合有一个分类,其中与是的两个类,如果,那么 0 。4、设群中元素的阶为,如果,那么与存在整除关系为 。5、凯莱定理说:任一个子群都同一个 同构。6、给出一个5-循环置换,那么 。7、若是有单位元的环的由生成的主理想,那么中的元素可以表达为 x 。8、若是一个有单位元的交换环,是的一个理想,那么是一个域当且仅当是 一个最大理想 。9、整环的一个元叫做一个素元,如果 、p既不是零元,也不是单位,且q只有平凡因子 。10、若域的一个扩域叫做的一个代数扩域,如果 。四、改错题(请
11、在下列命题中你认为错误的地方划线,并将正确的内容写在预备的横线上面。指出错误1分,更正错误2分。每小题3分,共15分)1、如果一个集合的代数运算同时适合消去律和分配律,那么在里,元的次序可以掉换。 结合律与交换律 2、有限群的另一定义:一个有乘法的有限非空集合作成一个群,如果满足对于乘法封闭;结合律成立、交换律成立。 消去律成立 3、设和是环的理想且,如果是的最大理想,那么。 S=I或S=R 4、唯一分解环的两个元和不一定会有最大公因子,若和都是和的最大公因子,那么必有。 一定有最大公因子;d和d只能差一个单位因子 5、叫做域的一个代数元,如果存在的都不等于零的元使得。 不都等于零的元 五、计
12、算题(共15分,每小题分标在小题后)1、给出下列四个四元置换组成的群,试写出的乘法表,并且求出的单位元及和的所有子群。2、设是模6的剩余类环,且。如果、,计算、和以及它们的次数。六、证明题(每小题10分,共40分)1、设和是一个群的两个元且,又设的阶,的阶,并且,证明:的阶。2、设为实数集,令,将的所有这样的变换构成一个集合,试证明:对于变换普通的乘法,作成一个群。3、设和为环的两个理想,试证和都是的理想。4、设是有限可交换的环且含有单位元1,证明:中的非零元不是可逆元就是零因子。 近世代数试卷参考解答一、判断题 1 2 3 4 5 6 7 8 9 10 二、单项选择题 1 2 3 4 5 6 7 8 9 10