收藏 分享(赏)

初二下期末几何压轴题及解析.doc

上传人:g****t 文档编号:89565 上传时间:2023-02-19 格式:DOC 页数:22 大小:2.92MB
下载 相关 举报
初二下期末几何压轴题及解析.doc_第1页
第1页 / 共22页
初二下期末几何压轴题及解析.doc_第2页
第2页 / 共22页
初二下期末几何压轴题及解析.doc_第3页
第3页 / 共22页
初二下期末几何压轴题及解析.doc_第4页
第4页 / 共22页
初二下期末几何压轴题及解析.doc_第5页
第5页 / 共22页
初二下期末几何压轴题及解析.doc_第6页
第6页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、初二下期末几何及解析1、以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接EB、FD,交点为G(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是_;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出EGD的度数难度一般:证全等即可(第三问,图1中就能看出是45。)解 (1)EB=FD。(2)EB=FD。证:AFB为等边三角形,AF=AB,FAB=60ADE为等边三角形,AD=AE,EAD=6

2、0,FAB+BAD=EAD+BAD即FAD=BAE,FADBAE,EB=FD(3)解:ADE为等边三角形,AED=EDA=60FADBAE,AEB=ADF设AEB为x,则ADF也为x于是有BED为(60-x),EDF为(60+x)EGD=180-BED-EDF=180-(60-x)-(60+x)=602、已知:如图,在ABCD中,点E是BC的中点,连接AE并延长交DC的延长线于点F,连接BF(1)求证:ABEFCE;(2)若AF=AD,求证:四边形ABFC是矩形简单题证明:(1)如图1图1在ABE和FCE中,1=2, 3=4,BE=CE,ABEFCE(2)ABEFCE,AB=FCABFC,四边

3、形ABFC是平行四边形 四边形ABCD是平行四边形,AD=BCAF=AD,AF=BC四边形ABFC是矩形3、已知:ABC是一张等腰直角三角形纸板,B=90,AB=BC=1(1)要在这张纸板上剪出一个正方形,使这个正方形的四个顶点都在ABC的边上小林设计出了一种剪法,如图1所示请你再设计出一种不同于图1的剪法,并在图2中画出来图4图3图2图1(2)若按照小林设计的图1所示的剪法来进行裁剪,记图1为第一次裁剪,得到1个正方形,将它的面积记为,则=_;余下的2个三角形中还按照小林设计的剪法进行第二次裁剪(如图3),图2得到2个新的正方形,将此次所得2个正方形的面积的和记为,则=_;在余下的4个三角形

4、中再按照小林设计的的剪法进行第三次裁剪(如图4),得到4个新的正方形,将此次所得4个正方形的面积的和记为;按照同样的方法继续操作下去,第次裁剪得到_个新的正方形,它们的面积的和=_(题外题:把你剪出的正方形的面积与图1中的正方形面积进行比较。)本题相当于中考12题的简单题解:(1)如图2; -1分(2), -6分4、已知:如图,平面直角坐标系中,正方形ABCD的边长为4,它的顶点A在轴的正半轴上运动,顶点D在轴的正半轴上运动(点A,D都不与原点重合),顶点B,C都在第一象限,且对角线AC,BD相交于点P,连接OP(1)当OA=OD时,点D的坐标为_,POA=_;(2)当OAOD时,求证:OP平

5、分DOA;(3)设点P到y轴的距离为,则在点A,D运动的过程中,的取值范围是_(第二问:如果点P到OP“所平分的角”的两边的距离相等,即可。)(第二问的题外题:当OAOD时,求证:OP平分DOA;)解:(1)(),; 图3证明:(2)过点P作PM轴于点M,PN轴于点N(如图3)四边形ABCD是正方形, PD=PA,DPA=90 PM轴于点M,PN轴于点N,PMO=PNO=PND=90NOM=90,四边形NOMP中,NPM=90DPA=NPM1=DPANPA,2=NPMNPA,1=2 在DPN和APM中, PND =PMA,1=2,PD=PA,DPNAPM PN=PM OP平分DOA (3) -

6、5、已知:如图,平面直角坐标系中,矩形OABC的顶点A,C的坐标分别为(4,0),(0,3)将OCA沿直线CA翻折,得到DCA,且DA交CB于点E(1)求证:EC=EA;(2)求点E的坐标;(3)连接DB,请直接写出四边形DCAB的周长和面积(第二问,有坐标,用代数法勾股定理可得CE=AE的长)(第三问的证明:过D做DMAC于M,过B做BNCA于N,则由相似可得,DM=BN=梯形的高(能求出具体数),CM=AN(具体数)还看得DB=MN(具体数)这样即可求出周长,有可求出面积。)证明:(1)如图1OCA沿直线CA翻折得到DCA,OCADCA 1=2四边形OABC是矩形,OACB1=32=3EC

7、=EA 解:(2)设CE= AE=点A,C的坐标分别为(4,0),(0,3),OA=4,OC=3四边形OABC是矩形,CB=OA=4,AB=OC=3,B=90在RtEBA中,解得 点E的坐标为() (3), 6、已知:ABC的两条高BD,CE交于点F,点M,N分别是AF,BC的中点,连接ED,MN(1)在图1中证明MN垂直平分ED;(2)若EBD=DCE=45(如图2),判断以M,E,N,D为顶点的四边形的形状,并证明你的结论图2第一问,连接EM,EN,DM,DN,利用三角形斜边中线等于斜边一半得,ME=MD,NE=ND,所以点M、N都在线段ED的垂直平分线上。(有ADFBDC,得AF=BC,

8、(还得MDA=NDB,证直角时用),进而得菱形,再证一直角得正方形,)(1)证明:连接EM,EN,DM,DN(如图2)BD,CE是ABC的高,BDAC,CEABBDA=BDC=CEB=CEA=90 在RtAEF中,M是AF的中点,EM=AF同理,DM=AF,EN=BC,DN=BCEM=DM, EN=DN 点M,N在ED的垂直平分线上MN垂直平分ED 图3 (2)判断:四边形MEND是正方形 证明:连接EM,EN,DM,DN(如图3)EBD=DCE=45,而BDA=CDF=90,BAD=ABD=45,DFC=DCF=45AD=BD,DF=DC在ADF和BDC中, AD=BD, ADF=BDC,(

9、Rt) DF=DC,ADFBDC AF=BC,1=2由(1)知DM=AF=AM,DN=BC=BN,DM=DN,1=3,2=43=4由(1)知EM=DM,EN=DN,DM=DN=EM=EN四边形MEND是菱形 3+MDF=ADF=90,4+MDF=NDM=90四边形MEND是正方形 7、(6分)如图,现有一张边长为4的正方形纸片ABCD,点P为AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,联结BP、BH。(1)求证:APBBPH;(2)求证:APHCPH;(3)当AP1时,求PH的长。第一问,设EPB=EBP=m,则BPH=90

10、-m,PBC=90-m,所以BPH=PBC,又因为APB=PBC,所以,APB=BPH。第二问的题外题:将此题与北京141之东城22和平谷24 放在一起,旋转翻折共同学习;此题中用旋转把ABP绕点B顺时针旋转90不能到达目的,于是延BP翻折,翻折后的剩余部分BQH与BCH也可全等,即可到达目的,还有意外收获:证得PBH=45。第三问,代数方法的勾股定理。(1)证明:PEBE,EPBEBP,又EPHEBC90,EPHEPBEBCEBP。即BPHPBC。又四边形ABCD为正方形,ADBC,APBPBC。APBBPH。(2分)(2)证明:过B作BQPH,垂足为Q,由(1)知,APBBPH,又ABQP

11、90,BPBP,ABPQBP,APQP,BABQ。又ABBC,BCBQ。又CBQH90,BHBH,BCHBQH,CHQH,APHCPH。(4分)(3)由(2)知,APPQ1,PD3。设QHHC,则DH。在RtPDH中,即,解得,PH3.4(6分)8、(6分)如图,在ABC中,ACAB,D点在AC上,ABCD,E、F分别是BC、AD的中点,连结EF并延长,与BA的延长线交于点G,若EFC60,联结GD,判断AGD的形状并证明。(也可问ADG的度数。)判断:AGD是直角三角形。证明:如图联结BD,取BD的中点H,联结HF、HE,F是AD的中点,13。同理,HE/CD,HE,2EFC。ABCD,HF

12、HE,12,3EFC。EFC60,3EFCAFG60,AGF是等边三角形。AFFGAFFD,GFFD,FGDFDG30,AGD90,即AGD是(特殊)直角三角形。(GE=BG-BE,GH是直角三角形的斜边,这样证全等。)10、阅读下列材料:小明遇到一个问题:AD是ABC的中线, 点M为BC边上任意一点(不与点D重合),过点M作一直线,使其等分ABC的面积他的做法是:如图1,连结AM,过点D作DN/AM交AC于点N,作直线MN,直线MN即为所求直线D图1MBANC 请你参考小明的做法,解决下列问题:(1)如图2,在四边形ABCD中,AE平分ABCD的面积,M为CD边上一点,过M作一直线MN,使其等分四边形ABCD的面积(要求:在图2中画出直线MN,并保留作图痕迹);图3图2(2)如图3,求作过点A的直线AE,使其等分四边形ABCD的面积(要求:在图3中画出直线AE,并保留作图痕迹)(第二问,把ABC的面积接到DC的延长线上。)11、 已知:四边形ABCD是正方形,点E在CD边上,点F在AD边上,且AFDE (1)如图1,判断AE与BF有怎样的位置关系?写出你的结果,并加以证明;(2)如图2,对角线AC与BD交于点O BD、AC分别与AE、BF交于点G,点H求证:OGOH;连接OP,若AP4,OP,求AB的长 ABC

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 考研资料 > 备考资料

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2