1、第五章 第四节 数列求和题组一分组转化求和1.数列a12,ak2k,a1020共有十项,且其和为240,那么a1aka10之值为 ()A31 B120 C130 D185解析:a1aka10240(22k20)240240110130.答案:C2数列an的通项公式是an,其前n项和Sn,那么项数n等于 ()A13 B10 C9 D6解析:an1,Sn(1)(1)(1)(1)n()nn1,由Snn1,观察可得出n6.答案:D3数列an中,a12,点(an1,an)(n1,且nNx)满足y2x1,那么a1a2a10_.解析:an2an11,an12(an11)an1为等比数列,那么an2n11,a
2、1a2a1010(202129)101 033.答案:1 033题组二裂项相消求和4.设函数f(x)xmax的导函数f(x)2x1,那么数列(nNx)的前n项和是 ()A. B. C. D.解析:f(x)mxm1a2x1,a1,m2,f(x)x(x1),用裂项法求和得Sn.答案:A5数列an,其前n项之和为,那么在平面直角坐标系中,直线(n1)xyn0在y轴上的截距为 ()A10 B9 C10 D9解析:数列的前n项和为1,所以n9,于是直线(n1)xyn0即为10xy90,所以在y轴上的截距为9.答案:B6在数列an中,an,又bn,求数列bn的前n项的和解:由得:an(123n),bn8(
3、),数列bn的前n项和为Sn8(1)()()()8(1).题组三错位相减法求和7.求和:Sn.解:当a1时,Sn123n;当a1时,Sn,Sn,两式相减得,(1)Sn,即Sn,Sn8(2023昌平模拟)设数列an满足a13a232a33n1an,nNx.(1)求数列an的通项公式;(2)设bn,求数列bn的前n项和Sn.解:(1)a13a232a33n1an, 当n2时,a13a232a33n2an1. 得3n1an,an.在中,令n1,得a1,适合an,an.(2)bn,bnn3n.Sn3232333n3n, 3Sn32233334n3n1.得2Snn3n1(332333n),即2Snn3n
4、1,Sn.题组四数列求和的综合应用9.(2023长郡模拟)数列an,对任意正整数n,a1a2a3an2n1,那么aaaa等于 ()A(2n1)2 B.(2n1) C.(4n1) D4n1解析:a1a2a3an2n1,a1a2a3an12n11,an2n2n12n1,a4n1,aaaa(4n1)答案:C10数列an的通项公式为anlog2(nNx),设其前n项和为Sn,那么使Sn5成立的自然数n ()A有最大值63 B有最小值63C有最大值32 D有最小值32解析:法一:依题意有anlog2log2(n1)log2(n2),所以Snlog22log23log23log24log2(n1)log2(n2)log22log2(n2)1log2(n2),令1log2(n2)62,故使Sn5成立的自然数n有最小值63.法二:Snlog2log2log2log2()log2,所以由Sn5,得log262,故使Snc3c4cn,cn取得的最大值是.又cnm2m1对一切正整数n恒成立,m2m1,即m24m50,得m1或m5.