ImageVerifierCode 换一换
格式:DOC , 页数:49 ,大小:560.50KB ,
资源ID:1038198      下载积分:8 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/1038198.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023年用 Hadoop 进行分布式并行编程.doc)为本站会员(g****t)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2023年用 Hadoop 进行分布式并行编程.doc

1、用 Hadoop 进行分布式并行编程, 第 1 局部根本概念与安装部署文档选项打印本页将此页作为电子邮件发送级别: 初级曹 羽中(caoyuzcn.ibm ), 软件工程师, IBM中国开发中心2023 年 5 月 22 日Hadoop 是一个实现了 MapReduce 计算模型的开源分布式并行编程框架,借助于 Hadoop, 程序员可以轻松地编写分布式并行程序,将其运行于计算机集群上,完成海量数据的计算。本文将介绍 MapReduce 计算模型,分布式并行计算等根本概念,以及 Hadoop 的安装部署和根本运行方法。Hadoop 简介Hadoop 是一个开源的可运行于大规模集群上的分布式并行

2、编程框架,由于分布式存储对于分布式编程来说是必不可少的,这个框架中还包含了一个分布式文件系统 HDFS( Hadoop Distributed File System )。也许到目前为止,Hadoop 还不是那么广为人知,其最新的版本号也仅仅是 0.16,距离 1.0 似乎都还有很长的一段距离,但提及 Hadoop 一脉相承的另外两个开源项目 Nutch 和 Lucene ( 三者的创始人都是 Doug Cutting ),那绝对是大名鼎鼎。Lucene 是一个用 Java 开发的开源高性能全文检索工具包,它不是一个完整的应用程序,而是一套简单易用的 API 。在全世界范围内,已有无数的软件系

3、统,Web基于 Lucene 实现了全文检索功能,后来 Doug Cutting 又开创了第一个开源的 Web 搜索引擎( :/ nutch.org) Nutch, 它在 Lucene 的根底上增加了网络爬虫和一些和 Web 相关的功能,一些解析各类文档格式的插件等,此外,Nutch 中还包含了一个分布式文件系统用于存储数据。从 Nutch 0.8.0 版本之后,Doug Cutting 把 Nutch 中的分布式文件系统以及实现 MapReduce 算法的代码独立出来形成了一个新的开源项 Hadoop。Nutch 也演化为基于 Lucene 全文检索以及 Hadoop 分布式计算平台的一个开

4、源搜索引擎。基于 Hadoop,你可以轻松地编写可处理海量数据的分布式并行程序,并将其运行于由成百上千个结点组成的大规模计算机集群上。从目前的情况来看,Hadoop 注定会有一个辉煌的未来:云计算是目前灸手可热的技术名词,全球各大 IT 公司都在投资和推广这种新一代的计算模式,而 Hadoop 又被其中几家主要的公司用作其云计算环境中的重要根底软件,如:雅虎正在借助 Hadoop 开源平台的力量对抗 Google, 除了资助 Hadoop 开发团队外,还在开发基于 Hadoop 的开源项目 Pig, 这是一个专注于海量数据集分析的分布式计算程序。Amazon 公司基于 Hadoop 推出了 A

5、mazon S3 ( Amazon Simple Storage Service ),提供可靠,快速,可扩展的网络存储效劳,以及一个商用的云计算平台 Amazon EC2 ( Amazon Elastic Compute Cloud )。在 IBM 公司的云计算项目-蓝云方案中,Hadoop 也是其中重要的根底软件。Google 正在跟IBM合作,共同推广基于 Hadoop 的云计算。回页首迎接编程方式的变革在摩尔定律的作用下,以前程序员根本不用考虑计算机的性能会跟不上软件的开展,因为约每隔 18 个月,CPU 的主频就会增加一倍,性能也将提升一倍,软件根本不用做任何改变,就可以享受免费的性能

6、提升。然而,由于晶体管电路已经逐渐接近其物理上的性能极限,摩尔定律在 2023 年左右开始失效了,人类再也不能期待单个 CPU 的速度每隔 18 个月就翻一倍,为我们提供越来越快的计算性能。Intel, AMD, IBM 等芯片厂商开始从多核这个角度来挖掘 CPU 的性能潜力,多核时代以及互联网时代的到来,将使软件编程方式发生重大变革,基于多核的多线程并发编程以及基于大规模计算机集群的分布式并行编程是将来软件性能提升的主要途径。许多人认为这种编程方式的重大变化将带来一次软件的并发危机,因为我们传统的软件方式根本上是单指令单数据流的顺序执行,这种顺序执行十分符合人类的思考习惯,却与并发并行编程格

7、格不入。基于集群的分布式并行编程能够让软件与数据同时运行在连成一个网络的许多台计算机上,这里的每一台计算机均可以是一台普通的 PC 机。这样的分布式并行环境的最大优点是可以很容易的通过增加计算机来扩充新的计算结点,并由此获得不可思议的海量计算能力, 同时又具有相当强的容错能力,一批计算结点失效也不会影响计算的正常进行以及结果的正确性。Google 就是这么做的,他们使用了叫做 MapReduce 的并行编程模型进行分布式并行编程,运行在叫做 GFS ( Google File System )的分布式文件系统上,为全球亿万用户提供搜索效劳。Hadoop 实现了 Google 的 MapRedu

8、ce 编程模型,提供了简单易用的编程接口,也提供了它自己的分布式文件系统 HDFS,与 Google 不同的是,Hadoop 是开源的,任何人都可以使用这个框架来进行并行编程。如果说分布式并行编程的难度足以让普通程序员望而生畏的话,开源的 Hadoop 的出现极大的降低了它的门槛,读完本文,你会发现基于 Hadoop 编程非常简单,无须任何并行开发经验,你也可以轻松的开发出分布式的并行程序,并让其令人难以置信地同时运行在数百台机器上,然后在短时间内完成海量数据的计算。你可能会觉得你不可能会拥有数百台机器来运行你的并行程序,而事实上,随着云计算的普及,任何人都可以轻松获得这样的海量计算能力。 例

9、如现在 Amazon 公司的云计算平台 Amazon EC2 已经提供了这种按需计算的租用效劳,有兴趣的读者可以去了解一下,这篇系列文章的第三局部将有所介绍。掌握一点分布式并行编程的知识对将来的程序员是必不可少的,Hadoop 是如此的简便好用,何不尝试一下呢?也许你已经急不可耐的想试一下基于 Hadoop 的编程是怎么回事了,但毕竟这种编程模型与传统的顺序程序大不相同,掌握一点根底知识才能更好地理解基于 Hadoop 的分布式并行程序是如何编写和运行的。因此本文会先介绍一下 MapReduce 的计算模型,Hadoop 中的分布式文件系统 HDFS, Hadoop 是如何实现并行计算的,然后

10、才介绍如何安装和部署 Hadoop 框架,以及如何运行 Hadoop 程序。回页首MapReduce 计算模型MapReduce 是 Google 公司的核心计算模型,它将复杂的运行于大规模集群上的并行计算过程高度的抽象到了两个函数,Map 和 Reduce, 这是一个令人惊讶的简单却又威力巨大的模型。适合用 MapReduce 来处理的数据集(或任务)有一个根本要求: 待处理的数据集可以分解成许多小的数据集,而且每一个小数据集都可以完全并行地进行处理。图 1. MapReduce 计算流程图一说明了用 MapReduce 来处理大数据集的过程, 这个 MapReduce 的计算过程简而言之,

11、就是将大数据集分解为成百上千的小数据集,每个(或假设干个)数据集分别由集群中的一个结点(一般就是一台普通的计算机)进行处理并生成中间结果,然后这些中间结果又由大量的结点进行合并, 形成最终结果。计算模型的核心是 Map 和 Reduce 两个函数,这两个函数由用户负责实现,功能是按一定的映射规那么将输入的 对转换成另一个或一批 对输出。表一 Map 和 Reduce 函数函数输入输出说明MapList()1. 将小数据集进一步解析成一批 对,输入 Map 函数中进行处理。2. 每一个输入的 会输出一批 。 是计算的中间结果。Reduce输入的中间结果 中的 List(v2) 表示是一批属于同一

12、个 k2 的 value以一个计算文本文件中每个单词出现的次数的程序为例, 可以是 ,经 Map 函数映射之后,形成一批中间结果 , 而 Reduce 函数那么可以对中间结果进行处理,将相同单词的出现次数进行累加,得到每个单词的总的出现次数。基于 MapReduce 计算模型编写分布式并行程序非常简单,程序员的主要编码工作就是实现 Map 和 Reduce 函数,其它的并行编程中的种种复杂问题,如分布式存储,工作调度,负载平衡,容错处理,网络通信等,均由 MapReduce 框架(比方 Hadoop )负责处理,程序员完全不用操心。回页首四 集群上的并行计算MapReduce 计算模型非常适合

13、在大量计算机组成的大规模集群上并行运行。图一中的每一个 Map 任务和每一个 Reduce 任务均可以同时运行于一个单独的计算结点上,可想而知其运算效率是很高的,那么这样的并行计算是如何做到的呢?数据分布存储Hadoop 中的分布式文件系统 HDFS 由一个管理结点 ( NameNode )和N个数据结点 ( DataNode )组成,每个结点均是一台普通的计算机。在使用上同我们熟悉的单机上的文件系统非常类似,一样可以建目录,创立,复制,删除文件,查看文件内容等。但其底层实现上是把文件切割成 Block,然后这些 Block 分散地存储于不同的 DataNode 上,每个 Block 还可以复

14、制数份存储于不同的 DataNode 上,到达容错容灾之目的。NameNode 那么是整个 HDFS 的核心,它通过维护一些数据结构,记录了每一个文件被切割成了多少个 Block,这些 Block 可以从哪些 DataNode 中获得,各个 DataNode 的状态等重要信息。如果你想了解更多的关于 HDFS 的信息,可进一步阅读参考资料:The Hadoop Distributed File System:Architecture and Design分布式并行计算Hadoop 中有一个作为主控的 JobTracker,用于调度和管理其它的 TaskTracker, JobTracker 可

15、以运行于集群中任一台计算机上。TaskTracker 负责执行任务,必须运行于 DataNode 上,即 DataNode 既是数据存储结点,也是计算结点。 JobTracker 将 Map 任务和 Reduce 任务分发给空闲的 TaskTracker, 让这些任务并行运行,并负责监控任务的运行情况。如果某一个 TaskTracker 出故障了,JobTracker 会将其负责的任务转交给另一个空闲的 TaskTracker 重新运行。本地计算数据存储在哪一台计算机上,就由这台计算机进行这局部数据的计算,这样可以减少数据在网络上的传输,降低对网络带宽的需求。在 Hadoop 这样的基于集群的分布式并行系统中,计算结点可以很方便地扩充,而因它所能够提供的计算能力近乎是无限的,但是由是数据需要在不同的计算机之间流动,故网络带宽变成了瓶颈,是非常珍贵的,“本地计算是最有效的一种节约网络带宽的手段,业界把这形容为“移动计算比移动数据更经济。图 2. 分布存储与并行计算任务粒度把原始大数据集

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2