ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:12.54KB ,
资源ID:1078054      下载积分:8 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/1078054.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023年高中数学求函数值域十二法素材新人教版.docx)为本站会员(sc****y)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2023年高中数学求函数值域十二法素材新人教版.docx

1、求函数值域十二法 求函数的值域或最值是高中数学根本问题之一,也是考试的热点和难点之一。遗憾的是教材中仅有少量求定义域的例题、习题,而求值域或最值的例题、习题那么是少得屈指可数。原因可能是求函数的值域往往需要综合用到众多的知识内容,技巧性强,有很高的难度,因此求函数的值域或最值的方法需要我们在后续的学习中逐步强化。本文谈一些求函数值域的方法,仅作抛砖引玉吧。一、 根本知识1 定义:因变量y的取值范围叫做函数的值域或函数值的集合。2 函数值域常见的求解思路: 划归为几类常见函数,利用这些函数的图象和性质求解。 反解函数,将自变量x用函数y的代数式形式表示出来,利用定义域建立函数y的不等式,解不等式

2、即可获解。 可以从方程的角度理解函数的值域,如果我们将函数看作是关于自变量的方程,在值域中任取一个值,对应的自变量一定为方程在定义域中的一个解,即方程在定义域内有解;另一方面,假设取某值,方程在定义域内有解,那么一定为对应的函数值。从方程的角度讲,函数的值域即为使关于的方程在定义域内有解的得取值范围。 特别地,假设函数可看成关于的一元二次方程,那么可通过一元二次方程在函数定义域内有解的条件,利用判别式求出函数的值域。 可以用函数的单调性求值域。 其他。3 函数值域的求法在以上求解思路的引导下,又要注意以下的常见求法和技巧:观察法;最值法;判别式法;反函数法;换元法;复合函数法;利用根本不等式法

3、;利用函数的单调性;利用三角函数的有界性;图象法;配方法;构造法。二、 举例说明 观察法:由函数的定义域结合图象,或直观观察,准确判断函数值域的方法。 例1:求函数的值域。 例2:求函数的值域。 最值法:对于闭区间上的连续函数,利用函数的最大值、最小值求函数的值域的方法。 例3:求函数,的值域。 例4:求函数的值域。 判别式法:通过二次方程的判别式求值域的方法。 例5:求函数的值域。 反函数法:利用求函数的反函数的定义域,从而得到原函数的值域的方法。 例6:求函数的值域。 例7:求函数,的值域。 换元法:通过对函数恒等变形,将函数化为易求值域的函数形式来求值域的方法。 例8:求函数的值域。 复

4、合函数法:对函数,先求的值域充当的定义域,从而求出的值域的方法。 例9:求函数的值域。 利用根本不等式求值域: 例10:求函数的值域。 例11:求函数的值域。 利用函数的单调性: 例12:求函数的值域。 提示:,都是增函数,故是减函数,因此当时,又,。 例13:求函数的值域。 略解:易知定义域为,而在上均为增函数,故利用三角函数的有解性: 例14:求函数的值域。 例15:求函数的值域。 图象法:如果可能做出函数的图象,可根据图象直观地得出函数的值域求某些分段函数的值域常用此方法。例16:求函数的值域。 求函数值域方法很多,常用的有以上这些,这些方法分别具有极强的针对性,每一种方法又不是万能的。

5、要顺利解答求函数值域的问题,必须熟练掌握各种技能技巧。配方法:当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域。例17:求函数的值域。点拨:将被开方数配方成完全平方数,利用二次函数的最值求。解:由,可知函数的定义域为x1,2。此时,函数的值域是。构造法:根据函数的结构特征,赋予几何图形,数形结合。例18:求函数的值域。点拨:将原函数变形,构造平面图形,由几何知识,确定出函数的值域。解:原函数变形为作一个长为4、宽为3的矩形ABCD,再切割成12个单位正方形。设HK=,那么EK=2,KF=2,AK=,KC= 。由三角形三边关系知,AK+KCAC=5。当A、K、C三点共线时取等号。原函数的知域为y|y5。

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2