ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:114KB ,
资源ID:108510      下载积分:11 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/108510.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(SI传染病模型.doc)为本站会员(g****t)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

SI传染病模型.doc

1、SI传染病模型1. 模型的建立由题意知道:在此环境中仅存在健康者(即易感者)和已感者(即病人),且在t时刻人数分别为S(t),L(t),不考虑人口的出生与死亡,此环境中的人口数量不变N即K,于是在单位时间内每天每个病人感染的人数S(t)L(t),它是病人的增加率,所以有:=*S*L L=L1 (1) 在t时刻健康者与已感者满足关系式:S+L = (2) 此模型满足Logistic模型,所以它的解为:L(t)=1/1+(1/L1)-1)*exp(-*t)1.求平衡点syms r S L K yy=r*L*(K-L);solve(y) ans = 0SIS传染病模型1. 模型假设 SIS模型的假设

2、条件1.2与SI模型相同,增加的条件为:每天被治愈的病人数占病人的总数为m ,此称为日治愈率。病人治愈后仍然可以成为被感染的健康者,显然,平均传染期为1/m 。2. 模型建立 此模型可以修整为:(a代表) 求平衡点:(s, l ,k分别代表S, L ,K)syms a t s l m k ff=a*l*(k-l)-m*l; solve(f) ans = -a*(-k+l)1.大于时的图像2.小于1时的图像 三SIR模型 模型假设:在SIS模型中我们增加:人群可分为健康者,病人,病疫免疫的移出者,且三种人群的数量分别为S,L,R;病人的日接触率和日治愈率分别为,m所以传染期为1. 模型建立 (1) (2)求平衡点syms a t s l m ks,l=solve(a*l*(k-l)-m*l,-(a*s*(k-s) s = a*k-a*l a*k-a*l l = 0k健康者与病人数量在总人数中的比例,对时间的变化关系图为:健康者与病人各自占总人数的比例间的相互关系:4

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2