ImageVerifierCode 换一换
格式:PPT , 页数:41 ,大小:977.50KB ,
资源ID:116374      下载积分:12 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/116374.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(传染病传播模型.ppt)为本站会员(la****1)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

传染病传播模型.ppt

1、传染病传播模型传染病传播模型 人们不可能去做传染病传播的试验以获取数据,从医疗卫生部门得到的资料也是不完全和不充分的。不同类型的传染病的传播过程有其各自不同的特点,弄清这些特点需要相当多的病理知识,这里更不可能从医学的角度来分析各种传染病的传播,所以,我们只能按照一般的传播机理建立模型。传染病传播问题和自然科学中一些已经有确定规律的问题不同,不可能立即对它做出恰当的假设,建立完善的模型,只能先做出最简单的假设,建立模型,得出结果,分析是否符合实际,然后针对其不合理或不完善处,进行修改或补充假设,逐步得到较为合理的模型。模型模型 1(SI 模型)假设条件 (1)人群分为易感染者(Suscepti

2、ble)和已感染者(Infective)两类,以下简称健康者和病人。时刻t这两类人在总人数中所占的比例分别记为s(t)和 i(t)。(2)在疾病传播期内所考察地区的总人数N不变,既不考虑生死,也不考虑迁移,并且时间以天为计量单位。(3)每个病人每天有效接触的平均人数是常数,称为日接触率日接触率。当病人与健康者有效接触时,使健康者受感染变为病人。根据假设,每个病人每天可使 s(t)个健康者变为病人。因为病人数为Ni(t),所以每天共有 Ns(t)i(t)个健康者被感染,即病人数Ni(t)的增加率为 Ns(t)i(t)。于是得到人员流程图如下 进而有 再设初始时刻(t=0)病人的比例为i0,则由

3、s(t)+i(t)=1,得到初值问题 )()(d)(dtitNsttiN0)0()1(ddiiiitiLogistic 模型 初值问题的解为 teiti1111)(0可画出 i(t)t 和 di/dt i 的图形为 i(t)t 的图形 di/dt i 的图形 于是可知:当 t 时,i1,即所有人终将被传染,全变为病人,这显然不符合实际情况。其原因是模型中没有考虑到病人可以治愈,人群中的健康者只能变成病人,病人不会再变成健康者。然而,这个模型在传染病流行的前期还是可用的,可用它来预报传染病高潮的到来:当 i=1/2时,di/dt 达到最大值(di/dt)m,这个时刻为 11ln01itm这时病人

4、增加得最快,可以认为是医院的门诊量最大的一天,预示着传染病高潮的到来,是医疗卫生部门关注的时刻。还可以看出,tm 与 成反比。因为日接触率 表示给定地区的卫生水平,越小卫生水平越高,所以改善保健设施、提高卫生水平可以推迟传染病高潮的到来。模型模型 2(不考虑出生和死亡的 SIS 模型)有些传染病如伤风、痢疾等治愈后免疫力很低,可以假定无免疫性,于是病人被治愈后变成健康者,健康者还可以被感染再变成病人,所以在 SI 模型的基础上,增加一个假设条件就会得到 SIS 模型。假设条件 (1)人群分为易感染者(Susceptible)和已感染者(Infective)两类,以下简称健康者和病人。时刻t这两

5、类人在总人数中所占的比例分别记为 s(t)和 i(t)。(2)在疾病传播期内所考察地区的总人数 N不变,既不考虑生死,也不考虑迁移,并且时间以天为计量单位。(3)每个病人每天有效接触的平均人数是常数,称为日接触率日接触率。当病人与健康者有效接触时,使健康者受感染变为病人。(4)每天被治愈的病人数占病人总数的比例为常数,称为日治愈率日治愈率。病人被治愈后称为仍可被感染的健康者,1/称为这种传染病的平平均传染期均传染期。如果考虑到假设条件(4),则人员流程图如下 于是有 NiNsitiNdd记初始时刻的病人的比例 i0(i0 0),从而 SI模型可以修正为 我们称之为 Bernolli(贝努里)方

6、程的初值问题,其解析解为 0)0()1(ddiiiiiti其中 =/。由 和 1/的含义可知,是整个传染期内每个病人有效接触的平均人数,称为接触数接触数。于是有,1,)1()1(11)(0001)(101tiiieitit1,01,1)(lim1tit我们画出 di/dt i 和 i t 的图形为 di/dt i 的图形(1)i(t)t 的图形(1)di/dt i 的图形(1)i(t)t 的图形(1)模型模型 3(考虑出生和死亡的 SIS 模型)当传染病的传播周期比较长时,若不考虑出生和死亡因素显然不妥,接下来考虑带有出生和死亡情况的 SIS 模型。假设条件 (1)人群分为易感染者(Susce

7、ptible)和已感染者(Infective)两类,以下简称健康者和病人。时刻t这两类人在总人数中所占的比例分别记为 s(t)和 i(t)。(2)在疾病传播期内所考察地区的总人数为N,总认为人口的出生率与死亡率相同,并且新生婴儿全为易感染者。记平均出生率为,则人口的平均寿命为 1/。(3)每个病人每天有效接触的平均人数是常数,称为日接触率日接触率。当病人与健康者有效接触时,使健康者受感染变为病人。(4)每天被治愈的病人数占病人总数的比例为常数,称为日治愈率日治愈率。病人被治愈后称为仍可被感染的健康者,1/称为这种传染病的平平均传染期均传染期。在上述的假设条件下,人员流程图如下 于是有 NsNN

8、iNsitsNddNiNsitiNdd 记初始时刻的健康者和病人的比例分别是 s0(s0 0)和 i0(i0 0),从而考虑出生和死亡的 SIS 模型为 00)0(,)0()1()1(dd)1(ddssiiiiiitsiiiiti而由 s+i=1 有 ds/dt=di/dt,于是,上式的第二个方程变为恒等式,从而模型简化为 0)0()1(ddiiiiiiti 如果令 =/(+),则 仍表示整个传染期内每个病人有效接触的平均人数,即接触数接触数。于是,以下的求解与讨论与不考虑出生和死亡的 SIS 模型相同。模型模型 4(不考虑出生和死亡的 SIR 模型)许多传染病如天花、流感、肝炎、麻疹等治愈后

9、均有很强的免疫力,所以病愈的人既非健康者(易感染者),也非病人(已感染者),它们已经退出传染系统。模型的假设条件为 (1)人群分为健康者、病人和病愈免疫的移移出者出者(Removed)三类,三类人在总人数N中占的比例分别为 s(t),i(t)和 r(t)。(2)病人的日接触率为,日治愈率为,传染期接触数为 =/。(3)在疾病传播期内所考察地区的总人数 N不变,既不考虑生死,也不考虑迁移,并且时间以天为计量单位。在上述的假设条件下,人员流程图如下 由假设条件显然有 s(t)+i(t)+r(t)=1 NsitsNddNiNsitiNddNitrNdd 记初始时刻的健康者和病人的比例分别是s0(s0

10、 0)和 i0(i0 0)(不妨设移出者的初始值 r0=0),于是得到 SIR 模型为如下的初值问题 0)0(,dd)0(,dd)0(,dd00ritriiisitisssits而由 s+i+r=1 有 dr/dt=di/dt ds/dt,于是,上式的第三个方程变为恒等式,从而模型简化为 上述的初值问题无法求出解析解,只能通过数值解法求出数值解。00)0(,dd)0(,ddiiisitisssits 例如,取 =1,=0.3,i(0)=0.02,s(0)=0.98,则求得数值解如下表,相应的 i(t)、s(t)曲线和 i s 曲线如下图。t 0 1 2 3 4 5 6 7 8 i(t)0.02

11、00 0.0390 0.0732 0.1285 0.2033 0.2795 0.3312 0.3444 0.3247 s(t)0.9800 0.9525 0.9019 0.8169 0.6927 0.5438 0.3995 0.2839 0.2027 t 9 10 15 20 25 30 35 40 45 i(t)0.2863 0.2418 0.0787 0.0223 0.0061 0.0017 0.0005 0.0001 0 s(t)0.1493 0.1145 0.0543 0.0434 0.0408 0.0401 0.0399 0.0399 0.0398 SIR 模型的 i(t)、s(t)

12、曲线 SIR 模型的 i s 曲线 在实际应用 SIR 模型时,模型中的参数经常通过一些统计资料来估计。事实上,能够求出解析解的微分方程模型是非常有限的,所以人们经常利用定性理论定性理论从方程本身推出解的相关性质。对于上述的 SIR 模型,就可以采用相轨线相轨线分析分析的方法,来获得i(t)、s(t)的一般变化规律。(参教案,略)模型模型 5(考虑出生和死亡的 SIR 模型)模型的假设 (1)人群分为健康者、病人和病愈免疫的移出者(Removed)三类,三类人在总人数 N 中占的比例分别为 s(t),i(t)和 r(t)。(2)病人的日接触率为,日治愈率为,传染期接触数为 =/。(3)在疾病传

13、播期内所考察地区的总人数为N,总认为人口的出生率与死亡率相同,并且新生婴儿全为易感染者。记平均出生率为,则人口的平均寿命为 1/。在上述的假设条件下,人员流程图如下 此时由假设条件有 s(t)+i(t)+r(t)=1 NsNNsitsNddNiNiNsitiNddNrNitrNdd 记初始时刻的健康者和病人的比例分别是s0(s0 0)和 i0(i0 0)(不妨设移出者的初始值 r0=0),于是得到考虑出生和死亡的 SIR模型如下 0)0(,dd)0(,dd)0(,dd00rritriiiisitissssits而由 s+i+r=1 有 dr/dt=di/dt ds/dt,于是,上式的第三个方程变为恒等式,从而模型简化为 采用相轨线分析(参见ppt资料传染病传染病模型模型1模型4),可以证明:若 1,则i=0,s=1;若 1,则 i=ie,s=se,(ie,se)=(1/,(1)/)。00)0(,)(dd)0(,ddiiisitissssitsppt资料传染病模型传染病模型2侧重于模型分析侧重于模型分析

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2