ImageVerifierCode 换一换
格式:DOC , 页数:20 ,大小:1.85MB ,
资源ID:12644      下载积分:9 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/12644.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023学年洛阳市重点中学高三第四次模拟考试数学试卷(含解析).doc)为本站会员(sc****y)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2023学年洛阳市重点中学高三第四次模拟考试数学试卷(含解析).doc

1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数在上单调递减的充要条件是( )ABCD2函数的图象大致是()ABCD3在区间上随机取一个数,使得成立的概率为等差数列的公差,且,若,则的最小值为( )A8B9C10D114已知数列中,

2、且当为奇数时,;当为偶数时,则此数列的前项的和为( )ABCD5如图是国家统计局公布的年入境游客(单位:万人次)的变化情况,则下列结论错误的是( ) A2014年我国入境游客万人次最少B后4年我国入境游客万人次呈逐渐增加趋势C这6年我国入境游客万人次的中位数大于13340万人次D前3年我国入境游客万人次数据的方差小于后3年我国入境游客万人次数据的方差6若双曲线的一条渐近线与直线垂直,则该双曲线的离心率为( )A2BCD7如图,这是某校高三年级甲、乙两班在上学期的5次数学测试的班级平均分的茎叶图,则下列说法不正确的是( )A甲班的数学成绩平均分的平均水平高于乙班B甲班的数学成绩的平均分比乙班稳定

3、C甲班的数学成绩平均分的中位数高于乙班D甲、乙两班这5次数学测试的总平均分是1038某设备使用年限x(年)与所支出的维修费用y(万元)的统计数据分别为,由最小二乘法得到回归直线方程为,若计划维修费用超过15万元将该设备报废,则该设备的使用年限为( )A8年B9年C10年D11年9空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离已知平面,两两互相垂直,点,点到,的距离都是3,点是上的动点,满足到的距离与到点的距离相等,则点的轨迹上的点到的距离的最小值是( )AB3CD10函数在的图象大致为ABCD11过双曲线左焦点的直线交的左支于两点,直线(是

4、坐标原点)交的右支于点,若,且,则的离心率是( )ABCD12已知双曲线,点是直线上任意一点,若圆与双曲线的右支没有公共点,则双曲线的离心率取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在编号为1,2,3,4,5且大小和形状均相同的五张卡片中,一次随机抽取其中的三张,则抽取的三张卡片编号之和是偶数的概率为_.14已知数列满足:点在直线上,若使、构成等比数列,则_15平面直角坐标系中,O为坐标原点,己知A(3,1),B(-1,3),若点C满足,其中,R,且+=1,则点C的轨迹方程为 16将函数的图象向右平移个单位长度后得到函数的图象,则函数的最大值为_.三、解答题:

5、共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某公司欲投资一新型产品的批量生产,预计该产品的每日生产总成本价格)(单位:万元)是每日产量(单位:吨)的函数:.(1)求当日产量为吨时的边际成本(即生产过程中一段时间的总成本对该段时间产量的导数);(2)记每日生产平均成本求证:;(3)若财团每日注入资金可按数列(单位:亿元)递减,连续注入天,求证:这天的总投入资金大于亿元.18(12分)已知函数,将的图象向左移个单位,得到函数的图象.(1)若,求的单调区间;(2)若,的一条对称轴是,求在的值域.19(12分)设函数(1)当时,求不等式的解集;(2)若存在,使得不等式对一切恒成立,

6、求实数的取值范围20(12分)已知函数,其中(1)求函数的单调区间;若满足,且求证: (2)函数若对任意,都有,求的最大值21(12分)的内角,的对边分别为,,已知,.(1)求;(2)若的面积,求.22(10分)已知矩形中,E,F分别为,的中点.沿将矩形折起,使,如图所示.设P、Q分别为线段,的中点,连接.(1)求证:平面;(2)求二面角的余弦值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】先求导函数,函数在上单调递减则恒成立,对导函数不等式换元成二次函数,结合二次函数的性质

7、和图象,列不等式组求解可得.【题目详解】依题意,令,则,故在上恒成立;结合图象可知,解得故.故选:C.【答案点睛】本题考查求三角函数单调区间. 求三角函数单调区间的两种方法:(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角(或),利用基本三角函数的单调性列不等式求解;(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.2、C【答案解析】根据函数奇偶性可排除AB选项;结合特殊值,即可排除D选项.【题目详解】,函数为奇函数,排除选项A,B;又当时,故选:C.【答案点睛】本题考查了依据函数解析式选择函数图象,注意奇偶性及特殊值的用法,属于基础题.3、D【答案解析】由

8、题意,本题符合几何概型,只要求出区间的长度以及使不等式成立的的范围区间长度,利用几何概型公式可得概率,即等差数列的公差,利用条件,求得,从而求得,解不等式求得结果.【题目详解】由题意,本题符合几何概型,区间长度为6,使得成立的的范围为,区间长度为2,故使得成立的概率为,又,令,则有,故的最小值为11,故选:D.【答案点睛】该题考查的是有关几何概型与等差数列的综合题,涉及到的知识点有长度型几何概型概率公式,等差数列的通项公式,属于基础题目.4、A【答案解析】根据分组求和法,利用等差数列的前项和公式求出前项的奇数项的和,利用等比数列的前项和公式求出前项的偶数项的和,进而可求解.【题目详解】当为奇数

9、时,则数列奇数项是以为首项,以为公差的等差数列,当为偶数时,则数列中每个偶数项加是以为首项,以为公比的等比数列.所以.故选:A【答案点睛】本题考查了数列分组求和、等差数列的前项和公式、等比数列的前项和公式,需熟记公式,属于基础题.5、D【答案解析】ABD可通过统计图直接分析得出结论,C可通过计算中位数判断选项是否正确.【题目详解】A由统计图可知:2014年入境游客万人次最少,故正确;B由统计图可知:后4年我国入境游客万人次呈逐渐增加趋势,故正确;C入境游客万人次的中位数应为与的平均数,大于万次,故正确;D由统计图可知:前年的入境游客万人次相比于后年的波动更大,所以对应的方差更大,故错误.故选:

10、D.【答案点睛】本题考查统计图表信息的读取以及对中位数和方差的理解,难度较易.处理问题的关键是能通过所给统计图,分析出对应的信息,对学生分析问题的能力有一定要求.6、B【答案解析】由题中垂直关系,可得渐近线的方程,结合,构造齐次关系即得解【题目详解】双曲线的一条渐近线与直线垂直双曲线的渐近线方程为,得则离心率故选:B【答案点睛】本题考查了双曲线的渐近线和离心率,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.7、D【答案解析】计算两班的平均值,中位数,方差得到正确,两班人数不知道,所以两班的总平均分无法计算,错误,得到答案.【题目详解】由题意可得甲班的平均分是104,中位数是103,

11、方差是26.4;乙班的平均分是102,中位数是101,方差是37.6,则A,B,C正确.因为甲、乙两班的人数不知道,所以两班的总平均分无法计算,故D错误.故选:.【答案点睛】本题考查了茎叶图,平均值,中位数,方差,意在考查学生的计算能力和应用能力.8、D【答案解析】根据样本中心点在回归直线上,求出,求解,即可求出答案.【题目详解】依题意在回归直线上,由,估计第年维修费用超过15万元.故选:D.【答案点睛】本题考查回归直线过样本中心点、以及回归方程的应用,属于基础题.9、D【答案解析】建立平面直角坐标系,将问题转化为点的轨迹上的点到轴的距离的最小值,利用到轴的距离等于到点的距离得到点轨迹方程,得

12、到,进而得到所求最小值.【题目详解】如图,原题等价于在直角坐标系中,点,是第一象限内的动点,满足到轴的距离等于点到点的距离,求点的轨迹上的点到轴的距离的最小值设,则,化简得:,则,解得:,即点的轨迹上的点到的距离的最小值是.故选:.【答案点睛】本题考查立体几何中点面距离最值的求解,关键是能够准确求得动点轨迹方程,进而根据轨迹方程构造不等关系求得最值.10、A【答案解析】因为,所以排除C、D当从负方向趋近于0时,可得.故选A11、D【答案解析】如图,设双曲线的右焦点为,连接并延长交右支于,连接,设,利用双曲线的几何性质可以得到,结合、可求离心率.【题目详解】如图,设双曲线的右焦点为,连接,连接并

13、延长交右支于.因为,故四边形为平行四边形,故.又双曲线为中心对称图形,故.设,则,故,故.因为为直角三角形,故,解得.在中,有,所以.故选:D.【答案点睛】本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于的方程,本题属于难题.12、B【答案解析】先求出双曲线的渐近线方程,可得则直线与直线的距离,根据圆与双曲线的右支没有公共点,可得,解得即可【题目详解】由题意,双曲线的一条渐近线方程为,即,是直线上任意一点,则直线与直线的距离,圆与双曲线的右支没有公共点,则,即,又故的取值范围为,故选:B【答案点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的

14、距离公式,其中解答中根据圆与双曲线的右支没有公共点得出是解答的关键,着重考查了推理与运算能力,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】先求出所有的基本事件个数,再求出“抽取的三张卡片编号之和是偶数”这一事件包含的基本事件个数,利用古典概型的概率计算公式即可算出结果.【题目详解】一次随机抽取其中的三张,所有基本事件为:1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5;共有10个,其中“抽取的三张卡片编号之和是偶数”包含6个基本事件,因此“抽取的三张卡片编号之和是偶数”的概率为:.故答案为:.【答案点睛】本题考查了古典概型及其概率计算公式,属于基础题.14、13【答案解析】根据点在直线上可求得,由等比中项的定义可构造方程求得结果.【题目详解】在上,成等比数列,即,解得:.故答案为:.【答案点睛】本题考查根据三项成等比数列求解参数值的问题,涉及到等比中项的应用,属于基础题.

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2