ImageVerifierCode 换一换
格式:DOC , 页数:18 ,大小:2.16MB ,
资源ID:13027      下载积分:13 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/13027.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023学年湖南省长沙麓山国际实验学校高三下学期联合考试数学试题(含解析).doc)为本站会员(g****t)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2023学年湖南省长沙麓山国际实验学校高三下学期联合考试数学试题(含解析).doc

1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1用一个平面去截正方体,则截面不可能是( )A正三角形B正方形C正五边形D正六边形2已知,满足约束条件,则的最大值为ABCD3已知二次函数的部分图象如图所示,则函数的零点所在区间为( )A

2、BCD4年部分省市将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为ABCD5函数的定义域为( )ABCD6已知椭圆的短轴长为2,焦距为分别是椭圆的左、右焦点,若点为上的任意一点,则的取值范围为( )ABCD7若复数为虚数单位在复平面内所对应的点在虚轴上,则实数a为( )AB2CD8在声学中,声强级(单位:)由公式给出,其中为声强(单位:).,那么( )ABCD9已知函数,若,,则a,b,c的大小关系是( )ABCD10设等差数列的前n项和为,且,则( )A9B12CD

3、11已知复数z满足(其中i为虚数单位),则复数z的虚部是( )AB1CDi12函数(其中,)的图象如图,则此函数表达式为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若函数满足:是偶函数;的图象关于点对称.则同时满足的,的一组值可以分别是_.14已知是抛物线的焦点,是上一点,的延长线交轴于点若为的中点,则_15已知向量满足,且,则 _16函数的图像如图所示,则该函数的最小正周期为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知三棱锥中侧面与底面都是边长为2的等边三角形,且面面,分别为线段的中点.为线段上的点,且.(1)证明:为线段的中点;

4、(2)求二面角的余弦值.18(12分)已知椭圆的左右焦点分别为,焦距为4,且椭圆过点,过点且不平行于坐标轴的直线交椭圆与两点,点关于轴的对称点为,直线交轴于点.(1)求的周长;(2)求面积的最大值.19(12分)如图,正方形是某城市的一个区域的示意图,阴影部分为街道,各相邻的两红绿灯之间的距离相等,处为红绿灯路口,红绿灯统一设置如下:先直行绿灯30秒,再左转绿灯30秒,然后是红灯1分钟,右转不受红绿灯影响,这样独立的循环运行.小明上学需沿街道从处骑行到处(不考虑处的红绿灯),出发时的两条路线()等可能选择,且总是走最近路线.(1)请问小明上学的路线有多少种不同可能?(2)在保证通过红绿灯路口用

5、时最短的前提下,小明优先直行,求小明骑行途中恰好经过处,且全程不等红绿灯的概率;(3)请你根据每条可能的路线中等红绿灯的次数的均值,为小明设计一条最佳的上学路线,且应尽量避开哪条路线?20(12分)设数列的前n项和满足,(1)证明:数列是等差数列,并求其通项公式(2)设,求证:.21(12分)在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程与曲线的直角坐标方程;(2)设为曲线上位于第一,二象限的两个动点,且,射线交曲线分别于,求面积的最小值,并求此时四边形的面积.22(10分)在中,内角的对边分别是,满足条件(

6、1)求角;(2)若边上的高为,求的长2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】试题分析:画出截面图形如图显然A正三角形,B正方形:D正六边形,可以画出五边形但不是正五边形;故选C考点:平面的基本性质及推论2、D【答案解析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论【题目详解】作出不等式组表示的平面区域如下图中阴影部分所示,等价于,作直线,向上平移,易知当直线经过点时最大,所以,故选D【答案点睛】本题主要考查线性规划的应用,利用目标函数的几何

7、意义,结合数形结合的数学思想是解决此类问题的基本方法3、B【答案解析】由函数f(x)的图象可知,0f(0)a1,f(1)1ba0,所以1b2.又f(x)2xb,所以g(x)ex2xb,所以g(x)ex20,所以g(x)在R上单调递增,又g(0)1b0,g(1)e2b0,根据函数的零点存在性定理可知,函数g(x)的零点所在的区间是(0,1),故选B.4、B【答案解析】甲同学所有的选择方案共有种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率,故选B5、C【答案解析】函数的定义域应满足 故选C.

8、6、D【答案解析】先求出椭圆方程,再利用椭圆的定义得到,利用二次函数的性质可求,从而可得的取值范围.【题目详解】由题设有,故,故椭圆,因为点为上的任意一点,故.又,因为,故,所以.故选:D.【答案点睛】本题考查椭圆的几何性质,一般地,如果椭圆的左、右焦点分别是,点为上的任意一点,则有,我们常用这个性质来考虑与焦点三角形有关的问题,本题属于基础题.7、D【答案解析】利用复数代数形式的乘除运算化简,再由实部为求得值【题目详解】解:在复平面内所对应的点在虚轴上,即故选D【答案点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题8、D【答案解析】由得,分别算出和的值,从而得

9、到的值.【题目详解】,当时,当时,故选:D.【答案点睛】本小题主要考查对数运算,属于基础题.9、D【答案解析】根据题意,求出函数的导数,由函数的导数与函数单调性的关系分析可得在上为增函数,又由,分析可得答案【题目详解】解:根据题意,函数,其导数函数,则有在上恒成立,则在上为增函数;又由,则;故选:【答案点睛】本题考查函数的导数与函数单调性的关系,涉及函数单调性的性质,属于基础题10、A【答案解析】由,可得以及,而,代入即可得到答案.【题目详解】设公差为d,则解得,所以.故选:A.【答案点睛】本题考查等差数列基本量的计算,考查学生运算求解能力,是一道基础题.11、A【答案解析】由虚数单位i的运算

10、性质可得,则答案可求.【题目详解】解:,则化为,z的虚部为.故选:A.【答案点睛】本题考查了虚数单位i的运算性质、复数的概念,属于基础题.12、B【答案解析】由图象的顶点坐标求出,由周期求出,通过图象经过点,求出,从而得出函数解析式.【题目详解】解:由图象知,则,图中的点应对应正弦曲线中的点,所以,解得,故函数表达式为故选:B.【答案点睛】本题主要考查三角函数图象及性质,三角函数的解析式等基础知识;考查考生的化归与转化思想,数形结合思想,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、,【答案解析】根据是偶函数和的图象关于点对称,即可求出满足条件的和.【题目详解】由是偶函数及

11、,可取,则,由的图象关于点对称,得,即,可取.故,的一组值可以分别是,.故答案为:,.【答案点睛】本题主要考查了正弦型三角函数的性质,属于基础题.14、【答案解析】由题意可得,又由于为的中点,且点在轴上,所以可得点的横坐标,代入抛物线方程中可求点的纵坐标,从而可求出点的坐标,再利用两点间的距离公式可求得结果.【题目详解】解:因为是抛物线的焦点,所以,设点的坐标为,因为为的中点,而点的横坐标为0,所以,所以,解得,所以点的坐标为所以,故答案为:【答案点睛】此题考查抛物线的性质,中点坐标公式,属于基础题.15、【答案解析】由数量积的运算律求得,再由数量积的定义可得结论【题目详解】由题意,即,故答案

12、为:【答案点睛】本题考查求向量的夹角,掌握数量积的定义与运算律是解题关键16、【答案解析】根据图象利用,先求出的值,结合求出,然后利用周期公式进行求解即可【题目详解】解:由,得,则,即,则函数的最小正周期,故答案为:8【答案点睛】本题主要考查三角函数周期的求解,结合图象求出函数的解析式是解决本题的关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【答案解析】(1)设为中点,连结,先证明,可证得,假设不为线段的中点,可得平面,这与矛盾,即得证;(2)以为原点,以分别为轴建立空间直角坐标系,分别求解平面,平面的法向量的法向量,利用二面角的向量公式,即得解.

13、【题目详解】(1)设为中点,连结.,又 平面,平面,.又分别为中点,又,.假设不为线段的中点,则与是平面内内的相交直线,从而平面,这与矛盾,所以为线段的中点.(2)以为原点,由条件面面,以分别为轴建立空间直角坐标系,则,.设平面的法向量为所以取,则,.同法可求得平面的法向量为,由图知二面角为锐二面角,二面角的余弦值为.【答案点睛】本题考查了立体几何与空间向量综合,考查了学生逻辑推理,空间想象,数学运算的能力,属于中档题.18、(1)12(2)【答案解析】(1)根据焦距得焦点坐标,结合椭圆上的点的坐标,根据定义;(2)求出椭圆的标准方程,设,联立直线和椭圆,结合韦达定理表示出面积,即可求解最大值.【题目详解】(1)设椭园的焦距为,则,故.则椭圆过点,由椭圆定义知:,故,因此,的周长;(2)由(1)知:,椭圆方程为:设,则,当且仅当在短轴顶点处取等,故面积的最大值为.【答案点睛】此题考查根据椭圆的焦点和椭圆上的点的坐标求椭圆的标准方程,根据直线与椭圆的交点关系求三角形面积的最值,涉及韦达定理的使用,综合性强,计算量大.19、(1)6种;(2);(3).【答案解析】(1)从4条街中选择2条横街即可;(2)小明途中恰好经过处,共有4条路线,即,分别对4条路线进行分析计算概率;(3)分别对小明上学的6条路线进行分析求均值,均值越大的应避免.【题目详解】(1)

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2