1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1平行四边形中,已知,点、分别满足,且,则向量在上的投影为( )A2BCD2元代数学家朱世杰的数学名著算术启蒙是中国古代代数学的通论,其中关于“松竹并生”的问题:松长五尺,竹长两尺,松日自
2、半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序图,若,则输出的( )A3B4C5D63将函数的图象分别向右平移个单位长度与向左平移(0)个单位长度,若所得到的两个图象重合,则的最小值为( )ABCD4命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是( )ABCD5设复数满足,则( )ABCD6设正项等比数列的前n项和为,若,则公比( )AB4CD27下列说法正确的是( )A“若,则”的否命题是“若,则”B“若,则”的逆命题为真命题C,使成立D“若,则”是真命题8网络是一种先进的高频传输技术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了
3、一款手机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精确到月)( )A2020年6月B2020年7月C2020年8月D2020年9月9一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积为( ) ABCD10已知且,函数,若,则( )A2BCD11已知直线与圆有公共点,则的最大值为( )A4BCD12在直角中,若,则( )ABCD
4、二、填空题:本题共4小题,每小题5分,共20分。13已知全集为R,集合,则_.14 “”是“”的_条件.(填写“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)15已知等差数列的前n项和为,则_16已知抛物线的焦点为,其准线与坐标轴交于点,过的直线与抛物线交于两点,若,则直线的斜率_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知.(1)若,求函数的单调区间;(2)若不等式恒成立,求实数的取值范围.18(12分)在平面直角坐标系xoy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系。已知曲线C的极坐标方程为,过点的直线l的参数方程为(
5、为参数),直线l与曲线C交于M、N两点。(1)写出直线l的普通方程和曲线C的直角坐标方程:(2)若成等比数列,求a的值。19(12分)已知函数,.(1)若不等式的解集为,求的值.(2)若当时,求的取值范围.20(12分)市民小张计划贷款60万元用于购买一套商品住房,银行给小张提供了两种贷款方式.等额本金:每月的还款额呈递减趋势,且从第二个还款月开始,每月还款额与上月还款额的差均相同;等额本息:每个月的还款额均相同.银行规定,在贷款到账日的次月当天开始首次还款(若2019年7月7日贷款到账,则2019年8月7日首次还款).已知小张该笔贷款年限为20年,月利率为0.004.(1)若小张采取等额本金
6、的还款方式,现已得知第一个还款月应还4900元,最后一个还款月应还2510元,试计算小张该笔贷款的总利息;(2)若小张采取等额本息的还款方式,银行规定,每月还款额不得超过家庭平均月收入的一半,已知小张家庭平均月收入为1万元,判断小张该笔贷款是否能够获批(不考虑其他因素);(3)对比两种还款方式,从经济利益的角度来考虑,小张应选择哪种还款方式.参考数据:.21(12分)如图,在平面四边形中,.(1)求;(2)求四边形面积的最大值.22(10分)以坐标原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,判断直线为参数)与圆的位置关系2023学年模拟测试卷参考答案(含详细解
7、析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】将用向量和表示,代入可求出,再利用投影公式可得答案.【题目详解】解:,得,则向量在上的投影为.故选:C.【答案点睛】本题考查向量的几何意义,考查向量的线性运算,将用向量和表示是关键,是基础题.2、B【答案解析】分析:根据流程图中的可知,每次循环的值应是一个等比数列,公比为;根据流程图中的可知,每次循环的值应是一个等比数列,公比为,根据每次循环得到的的值的大小决定循环的次数即可.详解: 记执行第次循环时,的值记为有,则有;记执行第次循环时,的值记为有,则有.令,则有,故,故
8、选B.点睛:本题为算法中的循环结构和数列通项的综合,属于中档题,解题时注意流程图中蕴含的数列关系(比如相邻项满足等比数列、等差数列的定义,是否是求数列的前和、前项积等).3、B【答案解析】首先根据函数的图象分别向左与向右平移m,n个单位长度后,所得的两个图像重合,那么,利用的最小正周期为,从而求得结果.【题目详解】的最小正周期为,那么(),于是,于是当时,最小值为,故选B.【答案点睛】该题考查的是有关三角函数的周期与函数图象平移之间的关系,属于简单题目.4、A【答案解析】分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.【题目详解】对于命题,由于,所以命题为真命题.对于
9、命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题. 、都是假命题.故选:A【答案点睛】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.5、D【答案解析】根据复数运算,即可容易求得结果.【题目详解】.故选:D.【答案点睛】本题考查复数的四则运算,属基础题.6、D【答案解析】由得,又,两式相除即可解出【题目详解】解:由得,又,或,又正项等比数列得,故选:D【答案点睛】本题主要考查等比数列的性质的应用,属于基础题7、D【答案解析】选项A,否命题为“若,则”,故A不正确选项B,逆命题为“若,则”,为假命题,故B不正确选项C,由题意知对,都有,故C
10、不正确选项D,命题的逆否命题“若,则”为真命题,故“若,则”是真命题,所以D正确选D8、C【答案解析】根据图形,计算出,然后解不等式即可.【题目详解】解:,点在直线上,令因为横轴1代表2019年8月,所以横轴13代表2020年8月,故选:C【答案点睛】考查如何确定线性回归直线中的系数以及线性回归方程的实际应用,基础题.9、C【答案解析】由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,求出底面面积,代入锥体体积公式,可得答案【题目详解】由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,其底面面积,高,故体积,故选:【答案点睛】本题考查的知识点是由三视图求几何体的体积,解决本
11、题的关键是得到该几何体的形状10、C【答案解析】根据分段函数的解析式,知当时,且,由于,则,即可求出.【题目详解】由题意知:当时,且由于,则可知:,则,则,则.即.故选:C.【答案点睛】本题考查分段函数的应用,由分段函数解析式求自变量.11、C【答案解析】根据表示圆和直线与圆有公共点,得到,再利用二次函数的性质求解.【题目详解】因为表示圆,所以,解得,因为直线与圆有公共点,所以圆心到直线的距离,即 ,解得,此时, 因为,在递增,所以的最大值.故选:C【答案点睛】本题主要考查圆的方程,直线与圆的位置关系以及二次函数的性质,还考查了运算求解的能力,属于中档题.12、C【答案解析】在直角三角形ABC
12、中,求得 ,再由向量的加减运算,运用平面向量基本定理,结合向量数量积的定义和性质:向量的平方即为模的平方,化简计算即可得到所求值【题目详解】在直角中,若,则 故选C.【答案点睛】本题考查向量的加减运算和数量积的定义和性质,主要是向量的平方即为模的平方,考查运算能力,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】先化简集合A,再求AB得解.【题目详解】由题得A=0,1,所以AB=-1,0,1.故答案为-1,0,1【答案点睛】本题主要考查集合的化简和并集运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.14、充分不必要【答案解析】由余弦的二倍角公式可得,即或,
13、即可判断命题的关系.【题目详解】由,所以或,所以“”是“”的充分不必要条件.故答案为:充分不必要【答案点睛】本题考查命题的充分条件与必要条件的判断,考查余弦的二倍角公式的应用.15、【答案解析】利用求出公差,结合等差数列的通项公式可求.【题目详解】设公差为,因为,所以,即.所以.故答案为:【答案点睛】本题主要考查等差数列通项公式的求解,利用等差数列的基本量是求解这类问题的通性通法,侧重考查数学运算的核心素养.16、【答案解析】求出抛物线焦点坐标,由,结合向量的坐标运算得,直线方程为,代入抛物线方程后应用韦达定理得,从而可求得,得斜率【题目详解】由得,即联立得解得或,故答案为:【答案点睛】本题考
14、查直线与抛物线相交,考查向量的线性运算的坐标表示直线方程与抛物线方程联立后消元,应用韦达定理是解决直线与抛物线相交问题的常用方法三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案不唯一,具体见解析(2)【答案解析】(1)分类讨论,利用导数的正负,可得函数的单调区间.(2)分离出参数后,转化为函数的最值问题解决,注意函数定义域.【题目详解】(1)由得或当时,由,得.由,得或此时的单调递减区间为,单调递增区间为和.当时,由,得由,得或此时的单调递减区间为,单调递增区间为和综上:当时,单调递减区间为,单调递增区间为和当时,的单调递减区间为,单调递增区间为和.(2)依题意,不等式恒成立等价于在上恒成立,可得,在上恒成立,设,则令,得,(舍)当时,;当时,当变化