1、一种基于压缩感知的信道估计方法苏子业:利用水声信道稀疏特性,提出了一种基于压缩感知的信道估计方法。首先对基于零前缀正交频分复用(zeros-Padded orthogonal frequency division multiplexing,ZP-OFDM)的水声通信系统接收端信号进行两次多普勒频移补偿并建立了离散信号模型,接着在传统正交匹配追踪(orthogonal matching pursuit,OMP)算法的框架下提出了一种改良的算法,该算法依据上次迭代中残差值和观测值的比例,参加相对应的加权矩阵以减小异常样本对本次迭代结果的影响,然后在所提算法的根底上,结合频域过采样的方法估计出水声信
2、道参数。仿真结果说明,改良的算法性能优于传统OMP算法,且更加有效的提高系统可靠性和有效性。Abstract: Exploiting the sparse channel in underwater acoustic (UWA) communication, an improved channel estimation method based on compressed sensing was proposed. Frist of all, a received discrete signal model was established in zeros Padded-orthogonal
3、frequency division multiplexing (ZP-OFDM) UWA communication system after compensating for the Doppler shift two times. Secondly an improved algorithm was proposed based on the structure of orthogonal matching pursuit (OMP), where an corresponding weighted matrix was added to decrease the impact of t
4、he outliers in this iteration by the ratio of the residuals and measurements in the last iteration. Then the improved algorithm and frequency domain oversampling method was jointly to have channel parameters estimated. The simulation results verify that the improved algorithm outperforms the traditi
5、onal OMP algorithm, and the improved algorithm can enhance the systems reliability better.關键词:零前缀正交频分复用;频域过采样;改良正交匹配追踪算法Key words: zeros Padded-orthogonal frequency division multiplexing (ZP-OFDM);frequency domain oversampling;improved orthogonal matching pursuit (OMP) algorithm中图分类号:G353.1 文献标识码:A
6、文章编号:1006-4311(2023)24-0210-030 引言水声信道是双选择性信道,但信道的大多数能量仅仅存在于少数的时延点和多普勒频移因子上,即水声信道是典型的稀疏信道1。近年来,为了充分利用水声信道的稀疏特性,提高通信的效率和可靠性,压缩感知理论被应用到水声信道估计中,例如使用典型的OMP1-4、BP5以及MP6等重构算法用来估计信道参数(信道增益、时延和多普勒因子)。在文献5中,那么通过特殊的发送信号结构和接收端频域过采样来提高系统性能,但这种信号结构使得频谱利用率低。在文献1中,基于普通的信号结构采用了OMP算法和BP算法,OMP算法虽然简便,但循环中的异常样本降低了估计结果的
7、精度,性能比BP算法差,而BP算法复杂度高、收敛慢,本钱比拟大。针对上述问题,本章提出了一种改良的OMP算法结合频域过采样方法对信道参数进行估计,在迭代运算中,参加相应的权值矩阵减小异常样本的影响,该算法既简便,又能提高系统有效性。1 水声通信系统信号模型1.1 水生通信系统根本模型3 仿真分析在本节实验仿真中,OFDM信号的子载波数为1024,导频信号数256个,空子载波数为96个,采用QPSK调制方式。中心频率fc为13kHz,带宽B为10kHz,OFDM信号持续时间长是102.4ms,Tg为25.6ms。水声信道多径个数为10条,相邻路径之间的时延差服从均值为0.5ms的指数分布;每条路
8、径的多普勒因子服从均值为0,标准差为aa的高斯分布,路径相对应的增益服从瑞利分布,并且会随着该条路径时延的增大呈指数递减。本次实验仿真结果是基于MATLAB对6000次的蒙特卡罗的平均实验。圖1比拟了频域过采样和非频域过采样在不同环境下的BER曲线。仿真中,使用的是OMP算法,根据图1可知,在较高的信噪比和aa的情况下,频域过采样方法得到的BER均低于非频域过采样方法,并且随着多普勒频移的增大改善效果越明显,这是因为频域过采样能够充分解调接收端的有用信息,减小了信息的流失。在图2中,接收端使用改良算法结合频域过采样的方法估计信道与单独使用改良OMP算法的方案进行比拟,频率过采样和改良算法的结合
9、在多普勒频移越显著的情况下,其曲线下滑的更快。仿真结果说明,改良OMP算法和频域过采样方法的结合相对于文中其他方法,能够提高系统有效性,且随着多普勒频移的增大,越能显著的提高系统有效性。4 结论本章根据水声信道的稀疏特性,研究了基于压缩感知的水声通信信道估计问题。首先,对接收端信号进行两次多普勒频移补偿;接着针对普通的发送信号结构,在接收端那么建立相对应的离散信号模型并进行频域过采样;最后,根据OMP算法中前一次循环产生的残差值和观测值的比例,参加相应的权值矩阵以减小误差大的样本对本次循环参数估计结果的影响,仿真结果验证了所提方法的有效性。参考文献:1Christian R. Berger,
10、Shengli Zhou, James C. Preisig, et al. Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensingJ. IEEE Transactions on Signal Processing, 2023, 58(3): 1708-1721.2Christian R.Berger, Zhaohui Wang, Jianzhong Huang, et al. Application of
11、compressive sensing to sparse channel estimationJ. NEW R&D TOOLS FOR WIRELESS COMMUNICATIONS, 2023, 48(11): 164-174.3孙崇强,李磊,赵书俊,等.基于压缩传感的OFDM水声信道估计方法研究J.海洋技术,2023,32(1):46-49.4Berger C. R, Gomes J, Moura J M F. Study of pilot designs for cyclic-prefix OFDM on time-varying and sparse Underwater Acous
12、tic channelsC/ IEEE-Spain Oceans. Santander: IEEE, 2023: 1-8.5Berger C. R., Gomes J, Moura J M F. Sea-trial results for cyclic-prefix OFDM with long symbol durationC/ IEEE-Spain Oceans. Santander: IEEE, 2023:1-8.6Zhaohui Wang, Shengli Zhou, Georgios B. Giannakis, et al. Frequency-domain oversampling
13、 for zero-padded OFDM in underwater acoustic communicationsJ. IEEE Journal of Oceanic Engineering, 2023, 37(1): 14-24.7B. Muquet, Z. Wang, G. B. Gainnakis, et al. Cyclic prefix or zeros-padded for multicarrier transmissionJ. IEEE Transaction on Communication, 2002, 50(12): 2136-2148.8B Li, S Zhou, M
14、 Stojanovic, L Freitag, et al. Multicarrier communication over underwater acoustic channels with nonuniform Doppler shiftsJ. IEEE Journal of Oceanic Engineering, 2023, 33(2): 198-209.9Lei Wan, Zhaohui Wang, Shengli Zhou, et al. Performance of comparison Doppler scale methods for underwater acoustic
15、OFDMJ. Journal of Electrical and Computer Engineering, 2023, 2023(1): 1-11.10郭铁梁,赵且峰,钱晋希.OFDM水声通信多普勒频移采样率转换算法J.计算机工程,2023,40(3):147-151.11Sean F. Mason, Christian R. Berger, Shengli Zhou, et al. Detection, synchronization, and Doppler scale estimation with multicarrier waveforms in underwater acoustic communicationJ. IEEE Journal on Selected Areas Communications, 2023, 26(3): 1638-1639.12HuananYu, JunyaoGuo. Compressed sensing: underwater acoustic channel estimation with Doppler estimationC/ IEEE 8th International Conference on WiCOM. Shanghai: IEEE, 2023: 1-