1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并
2、交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1观察下列各式:,根据以上规律,则( )ABCD2抛物线的准线方程是,则实数( )ABCD3总体由编号01,,02,19,20的20个个体组成利用下面的随机数表选取5个个体,选取方法是随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为7816657208026314070243699728019832049234493582003623486969387481A08B07C02D014双曲线:(),左焦点到渐近线的距离为2,则双曲线的渐近线方程为
3、( )ABCD5命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是( )ABCD6执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为( )ABCD7已知双曲线的一个焦点为,点是的一条渐近线上关于原点对称的两点,以为直径的圆过且交的左支于两点,若,的面积为8,则的渐近线方程为( )ABCD8已知正方体的棱长为1,平面与此正方体相交.对于实数,如果正方体的八个顶点中恰好有个点到平面的距离等于,那么下列结论中,一定正确的是ABCD9已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的( )ABCD10设全集,集合,则集合(
4、)ABCD11已知向量,且与的夹角为,则( )AB1C或1D或912不等式的解集记为,有下面四个命题:;.其中的真命题是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数,若函数恰有4个零点,则实数的取值范围是_14平面区域的外接圆的方程是_.15连续掷两次骰子,分别得到的点数作为点的坐标,则点落在圆内的概率为_16若将函数的图象沿轴向右平移个单位后所得的图象与的图象关于轴对称,则的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的参数方程为(为参数),直线经过点且
5、倾斜角为.(1)求曲线的极坐标方程和直线的参数方程;(2)已知直线与曲线交于,满足为的中点,求.18(12分)已知函数(,为自然对数的底数),.(1)若有两个零点,求实数的取值范围;(2)当时,对任意的恒成立,求实数的取值范围.19(12分)已知函数,函数在点处的切线斜率为0.(1)试用含有的式子表示,并讨论的单调性;(2)对于函数图象上的不同两点,如果在函数图象上存在点,使得在点处的切线,则称存在“跟随切线”.特别地,当时,又称存在“中值跟随切线”.试问:函数上是否存在两点使得它存在“中值跟随切线”,若存在,求出的坐标,若不存在,说明理由.20(12分)设数列是等比数列,已知, (1)求数列
6、的首项和公比;(2)求数列的通项公式21(12分)如图,在矩形中,点是边上一点,且,点是的中点,将沿着折起,使点运动到点处,且满足.(1)证明:平面;(2)求二面角的余弦值.22(10分)如图,三棱柱中,侧面为菱形,.(1)求证:平面;(2)若,求二面角的余弦值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】每个式子的值依次构成一个数列,然后归纳出数列的递推关系后再计算【题目详解】以及数列的应用根据题设条件,设数字,构成一个数列,可得数列满足,则,故选:B【答案点睛】本题主要考
7、查归纳推理,解题关键是通过数列的项归纳出递推关系,从而可确定数列的一些项2、C【答案解析】根据准线的方程写出抛物线的标准方程,再对照系数求解即可.【题目详解】因为准线方程为,所以抛物线方程为,所以,即.故选:C【答案点睛】本题考查抛物线与准线的方程.属于基础题.3、D【答案解析】从第一行的第5列和第6列起由左向右读数划去大于20的数分别为:08,02,14,07,01,所以第5个个体是01,选D.考点:此题主要考查抽样方法的概念、抽样方法中随机数表法,考查学习能力和运用能力.4、B【答案解析】首先求得双曲线的一条渐近线方程,再利用左焦点到渐近线的距离为2,列方程即可求出,进而求出渐近线的方程.
8、【题目详解】设左焦点为,一条渐近线的方程为,由左焦点到渐近线的距离为2,可得,所以渐近线方程为,即为,故选:B【答案点睛】本题考查双曲线的渐近线的方程,考查了点到直线的距离公式,属于中档题.5、A【答案解析】分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.【题目详解】对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题. 、都是假命题.故选:A【答案点睛】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.6、B【答案解析】根据程序框图知当时,循环终止,此时,即可得答案.【题目详解】
9、,.运行第一次,不成立,运行第二次,不成立,运行第三次,不成立,运行第四次,不成立,运行第五次,成立,输出i的值为11,结束.故选:B.【答案点睛】本题考查补充程序框图判断框的条件,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意模拟程序一步一步执行的求解策略.7、B【答案解析】由双曲线的对称性可得即,又,从而可得的渐近线方程.【题目详解】设双曲线的另一个焦点为,由双曲线的对称性,四边形是矩形,所以,即,由,得:,所以,所以,所以,所以,的渐近线方程为.故选B【答案点睛】本题考查双曲线的简单几何性质,考查直线与圆的位置关系,考查数形结合思想与计算能力,属于中档题.
10、8、B【答案解析】此题画出正方体模型即可快速判断m的取值.【题目详解】如图(1)恰好有3个点到平面的距离为;如图(2)恰好有4个点到平面的距离为;如图(3)恰好有6个点到平面的距离为.所以本题答案为B.【答案点睛】本题以空间几何体为载体考查点,面的位置关系,考查空间想象能力,考查了学生灵活应用知识分析解决问题的能力和知识方法的迁移能力,属于难题.9、C【答案解析】试题分析:通过对以下四个四棱锥的三视图对照可知,只有选项C是符合要求的.考点:三视图10、C【答案解析】集合, 点睛:本题是道易错题,看清所问问题求并集而不是交集.11、C【答案解析】由题意利用两个向量的数量积的定义和公式,求的值.【
11、题目详解】解:由题意可得,求得,或,故选:C.【答案点睛】本题主要考查两个向量的数量积的定义和公式,属于基础题12、A【答案解析】作出不等式组表示的可行域,然后对四个选项一一分析可得结果.【题目详解】作出可行域如图所示,当时,即的取值范围为,所以为真命题;为真命题;为假命题.故选:A【答案点睛】此题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】函数恰有4个零点,等价于函数与函数的图象有四个不同的交点,画出函数图象,利用数形结合思想进行求解即可.【题目详解】函数恰有4个零点,等价于函数与函数的图
12、象有四个不同的交点,画出函数图象如下图所示:由图象可知:实数的取值范围是.故答案为:【答案点睛】本题考查了已知函数零点个数求参数取值范围问题,考查了数形结合思想和转化思想.14、【答案解析】作出平面区域,可知平面区域为三角形,求出三角形的三个顶点坐标,设三角形的外接圆方程为,将三角形三个顶点坐标代入圆的一般方程,求出、的值,即可得出所求圆的方程.【题目详解】作出不等式组所表示的平面区域如下图所示:由图可知,平面区域为,联立,解得,则点,同理可得点、,设的外接圆方程为,由题意可得,解得,因此,所求圆的方程为.故答案为:.【答案点睛】本题考查三角形外接圆方程的求解,同时也考查了一元二次不等式组所表
13、示的平面区域的求作,考查数形结合思想以及运算求解能力,属于中等题.15、【答案解析】连续掷两次骰子共有种结果,列出满足条件的结果有11种,利用古典概型即得解【题目详解】由题意知,连续掷两次骰子共有种结果,而满足条件的结果为:共有11种结果,根据古典概型概率公式,可得所求概率故答案为:【答案点睛】本题考查了古典概型的应用,考查了学生综合分析,数学运算的能力,属于基础题.16、【答案解析】由题意利用函数的图象变换规律,三角函数的图像的对称性,求得的最小值.【题目详解】解:将函数的图象沿轴向右平移个单位长度,可得的图象.根据图象与的图象关于轴对称,可得,即时,的最小值为.故答案为:.【答案点睛】本题
14、主要考查函数的图象变换规律,正弦函数图像的对称性,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【答案解析】(1)由曲线的参数方程消去参数可得曲线的普通方程,由此可求曲线的极坐标方程;直接利用直线的倾斜角以及经过的点求出直线的参数方程即可;(2)将直线的参数方程,代入曲线的普通方程,整理得,利用韦达定理,根据为的中点,解出即可.【题目详解】(1)由(为参数)消去参数,可得,即,已知曲线的普通方程为,即,曲线的极坐标方程为,直线经过点,且倾斜角为,直线的参数方程:(为参数,).(2)设对应的参数分别为,.将直线的参数方程代入并整理,得,.又为的中点,即,即,.【答案点睛】本题考查了圆的参数方程与极坐标