ImageVerifierCode 换一换
格式:DOCX , 页数:3 ,大小:19.84KB ,
资源ID:1492507      下载积分:8 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/1492507.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023年环境科学中的机器学习方法神经网络与核方法.docx)为本站会员(sc****y)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2023年环境科学中的机器学习方法神经网络与核方法.docx

1、环境科学中的机器学习方法,神经网络与核方法William W. Hsieh University of BritishColumbia, CanadaMachine Learning Methodsin the EnvironmentalSciences2023, 349pp.HardcoverISBN: 9780521791922William W. Hsieh著机器学习是计算机智能(也叫人工智能)的一个主要的子领域。它的主要目标就是利用计算的方法从数据中提取信息。神经网络方法,一般被认为是机器学习研究中的第一次突破,它自上世纪80年代以来开始流行,而核方法是在上世纪90年代后半期作为机器学

2、习研究的第二波高潮而到来的。本书对于机器学习方法和它在环境科学中的应用给出了统一的处理。机器学习方法进入环境科学是在上世纪90年代。已经大量地应用于卫星数据的处理、大气环流模型、天气和气象预报、空气质量预报、环境数据的分析和建模、海洋和水文预报、生态建模、以及雪灾冰川和森林监测等领域。书中第1-3章主要是为学生们而写的背景性资料,包括在环境科学中应用的标准统计方法。1.主要介绍了概率分布的根本意义、随机变量的平均值与方差、分析两变量关系的相关与回归分析方法等根本统计概念;2.回忆了主成份分析的方法和它的一些变化,以及经典相关分析方法;3.引入了基于时间序列数据的分析方法,如奇异谱分析(SSA)

3、、主振荡型分析(POP)等。第4-12章为那些标准的线性统计方法提供了有力的非线性转化。4.关于前馈神经网络模型及其最普遍的代表多层感知哭模型(MLP模型),介绍了MLP模型的一些历史开展知识;5.为MLP神经网络模型所需要的非线性优化的内容;6.探索了几种能够使神经网络模型正确的学习并泛化的方法;7.是关于核方法内容。主要讨论了核方法的数据根底、主要思想以及它的一些缺点,并介绍了从神经网络到核方法的过渡;8.介绍了处理离散型数据的方法非线性分类;9.介绍了两种核方法(支撑微量回归、SVR 和高斯过程、GP)和一种树方法(分类和回归树方法CART);10.关于非线性主成份分析的方法及相关的一些

4、研究方法;11.系统地阐述了MLP和非线性经典相关分析(NLCCA)方法,并以热带太平洋气候变异性数据及它同中纬度气候变异的相关性为例加以说明;12.给出了大量机器学习方法在环境科学众多研究领域中的应用实例如遥感、海洋学、大气科学、水文学及生态学等。作者William W. Hsieh是英属哥伦比亚大学地球与海洋科学系及物理与天文学系的教授,主持大气科学工程。作者在环境科学中开展和应用机器学习方法中所做的先驱性工作在国际上享有很高的知名度。已在天气变化、机器学习、海洋学、大气科学和水文学等领域发表论文80多篇。本书主要适用于研究生初期阶段或者高年级的本科生,而且对于那些致力于在各自的研究领域应用这些新方法的研究者和参与者们也是十分有价值的。朱立峰,博士后(中国科学院动物学研究所)Zhu lifeng,Postdoctoral(Institute of Zoology,CAS)此资料由网络收集而来,如有侵权请告知上传者立即删除。资料共分享,我们负责传递知识。

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2