ImageVerifierCode 换一换
格式:DOC , 页数:21 ,大小:2.42MB ,
资源ID:15545      下载积分:11 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/15545.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023届江功省睢宁县第一中学高三下学期联合考试数学试题(含解析).doc)为本站会员(la****1)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2023届江功省睢宁县第一中学高三下学期联合考试数学试题(含解析).doc

1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设双曲线(,)的一条渐近线与抛物线有且只有一个公共点,且椭圆的焦距为2,则双曲线的标准方程为( )ABCD2某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比

2、该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图: 则下列结论正确的是( ).A与2016年相比,2019年不上线的人数有所增加B与2016年相比,2019年一本达线人数减少C与2016年相比,2019年二本达线人数增加了0.3倍D2016年与2019年艺体达线人数相同3已知双曲线的一条渐近线与直线垂直,则双曲线的离心率等于( )ABCD4某四棱锥的三视图如图所示,该几何体的体积是( )A8BC4D5五名志愿者到三个不同的单位去进行帮扶,每个单位至少一人,则甲、乙两人不在同一个单位的概率为( )ABCD6已知双曲线的左、右顶点分别是,双曲线的右焦点为,点在过且垂直

3、于轴的直线上,当的外接圆面积达到最小时,点恰好在双曲线上,则该双曲线的方程为( )ABCD7如图是二次函数的部分图象,则函数的零点所在的区间是( )ABCD8的展开式中的常数项为( )A60B240C80D1809若为虚数单位,则复数,则在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限10在四边形中,点在线段的延长线上,且,点在边所在直线上,则的最大值为( )ABCD11设且,则下列不等式成立的是( )ABCD12在中,角的对边分别为,若则角的大小为()ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知是偶函数,则的最小值为_.14将函数的图象向左平移个单位长

4、度,得到一个偶函数图象,则_15已知实数满足(为虚数单位),则的值为_.16在的展开式中,项的系数是_(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆,上顶点为,离心率为,直线交轴于点,交椭圆于,两点,直线,分别交轴于点,()求椭圆的方程;()求证:为定值18(12分)在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为;直线l的参数方程为(t为参数).直线l与曲线C分别交于M,N两点.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)若点P的极坐标为,求的值.19(12分)已知各项均为正数的数列的

5、前项和为,满足,恰为等比数列的前3项(1)求数列,的通项公式;(2)求数列的前项和为;若对均满足,求整数的最大值;(3)是否存在数列满足等式成立,若存在,求出数列的通项公式;若不存在,请说明理由20(12分)设函数.(1)解不等式;(2)记的最大值为,若实数、满足,求证:.21(12分)如图,在平面直角坐标系中,椭圆的离心率为,且过点.求椭圆的方程;已知是椭圆的内接三角形,若点为椭圆的上顶点,原点为的垂心,求线段的长;若原点为的重心,求原点到直线距离的最小值.22(10分)已知函数,设(1)当时,求函数的单调区间;(2)设方程(其中为常数)的两根分别为,证明:(注:是的导函数)2023学年模拟

6、测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】设双曲线的渐近线方程为,与抛物线方程联立,利用,求出的值,得到的值,求出关系,进而判断大小,结合椭圆的焦距为2,即可求出结论.【题目详解】设双曲线的渐近线方程为,代入抛物线方程得,依题意,椭圆的焦距,双曲线的标准方程为.故选:B.【答案点睛】本题考查椭圆和双曲线的标准方程、双曲线的简单几何性质,要注意双曲线焦点位置,属于中档题.2、A【答案解析】设2016年高考总人数为x,则2019年高考人数为,通过简单的计算逐一验证选项A、B、C、D.【题目详解

7、】设2016年高考总人数为x,则2019年高考人数为,2016年高考不上线人数为,2019年不上线人数为,故A正确;2016年高考一本人数,2019年高考一本人数,故B错误;2019年二本达线人数,2016年二本达线人数,增加了倍,故C错误;2016年艺体达线人数,2019年艺体达线人数,故D错误.故选:A.【答案点睛】本题考查柱状图的应用,考查学生识图的能力,是一道较为简单的统计类的题目.3、B【答案解析】由于直线的斜率k,所以一条渐近线的斜率为,即,所以,选B.4、D【答案解析】根据三视图知,该几何体是一条垂直于底面的侧棱为2的四棱锥,画出图形,结合图形求出底面积代入体积公式求它的体积【题

8、目详解】根据三视图知,该几何体是侧棱底面的四棱锥,如图所示:结合图中数据知,该四棱锥底面为对角线为2的正方形,高为PA=2,四棱锥的体积为.故选:D.【答案点睛】本题考查由三视图求几何体体积,由三视图正确复原几何体是解题的关键,考查空间想象能力属于中等题.5、D【答案解析】三个单位的人数可能为2,2,1或3,1,1,求出甲、乙两人在同一个单位的概率,利用互为对立事件的概率和为1即可解决.【题目详解】由题意,三个单位的人数可能为2,2,1或3,1,1;基本事件总数有种,若为第一种情况,且甲、乙两人在同一个单位,共有种情况;若为第二种情况,且甲、乙两人在同一个单位,共有种,故甲、乙两人在同一个单位

9、的概率为,故甲、乙两人不在同一个单位的概率为.故选:D.【答案点睛】本题考查古典概型的概率公式的计算,涉及到排列与组合的应用,在正面情况较多时,可以先求其对立事件,即甲、乙两人在同一个单位的概率,本题有一定难度.6、A【答案解析】点的坐标为,展开利用均值不等式得到最值,将点代入双曲线计算得到答案.【题目详解】不妨设点的坐标为,由于为定值,由正弦定理可知当取得最大值时,的外接圆面积取得最小值,也等价于取得最大值,因为,所以,当且仅当,即当时,等号成立,此时最大,此时的外接圆面积取最小值,点的坐标为,代入可得,所以双曲线的方程为故选:【答案点睛】本题考查了求双曲线方程,意在考查学生的计算能力和应用

10、能力.7、B【答案解析】根据二次函数图象的对称轴得出范围,轴截距,求出的范围,判断在区间端点函数值正负,即可求出结论.【题目详解】,结合函数的图象可知,二次函数的对称轴为,所以在上单调递增.又因为,所以函数的零点所在的区间是.故选:B.【答案点睛】本题考查二次函数的图象及函数的零点,属于基础题.8、D【答案解析】求的展开式中的常数项,可转化为求展开式中的常数项和项,再求和即可得出答案.【题目详解】由题意,中常数项为,中项为,所以的展开式中的常数项为:.故选:D【答案点睛】本题主要考查二项式定理的应用和二项式展开式的通项公式,考查学生计算能力,属于基础题.9、B【答案解析】首先根据特殊角的三角函

11、数值将复数化为,求出,再利用复数的几何意义即可求解.【题目详解】,则在复平面内对应的点的坐标为,位于第二象限.故选:B【答案点睛】本题考查了复数的几何意义、共轭复数的概念、特殊角的三角函数值,属于基础题.10、A【答案解析】依题意,如图以为坐标原点建立平面直角坐标系,表示出点的坐标,根据求出的坐标,求出边所在直线的方程,设,利用坐标表示,根据二次函数的性质求出最大值.【题目详解】解:依题意,如图以为坐标原点建立平面直角坐标系,由,因为点在线段的延长线上,设,解得,所在直线的方程为 因为点在边所在直线上,故设当时故选:【答案点睛】本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题.11、

12、A【答案解析】 项,由得到,则,故项正确;项,当时,该不等式不成立,故项错误;项,当,时,即不等式不成立,故项错误;项,当,时,即不等式不成立,故项错误综上所述,故选12、A【答案解析】由正弦定理化简已知等式可得,结合,可得,结合范围,可得,可得,即可得解的值【题目详解】解:,由正弦定理可得:,故选A【答案点睛】本题主要考查了正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、2【答案解析】由偶函数性质可得,解得,再结合基本不等式即可求解【题目详解】令得,所以,当且仅当时取等号.故答案为:2【答案点睛】考查函数的奇偶性、基本不等

13、式,属于基础题14、【答案解析】根据平移后关于轴对称可知关于对称,进而利用特殊值构造方程,从而求得结果.【题目详解】向左平移个单位长度后得到偶函数图象,即关于轴对称关于对称 即: 本题正确结果:【答案点睛】本题考查根据三角函数的对称轴求解参数值的问题,关键是能够通过平移后的对称轴得到原函数的对称轴,进而利用特殊值的方式来进行求解.15、【答案解析】由虚数单位的性质结合复数相等的条件列式求得,的值,则答案可求【题目详解】解:由,所以,得,故答案为:【答案点睛】本题考查复数代数形式的乘除运算,考查虚数单位的性质,属于基础题16、 【答案解析】的展开式的通项为:.令,得.答案为:-40.点睛:求二项

14、展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r1项,由特定项得出r值,最后求出其参数.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、();(),证明见解析【答案解析】()根据题意列出关于,的方程组,解出,的值,即可得到椭圆的方程;()设点,点,易求直线的方程为:,令得,同理可得,所以,联立直线与椭圆方程,利用韦达定理代入上式,化简即可得到【题目详解】()解:由题意可知:,解得,椭圆的方程为:;()证:设点,点,联立方程,消去得:,

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2