ImageVerifierCode 换一换
格式:DOC , 页数:20 ,大小:1.90MB ,
资源ID:16103      下载积分:8 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/16103.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(上海市静安、杨浦、青浦、宝山四区2023学年高三下学期第五次调研考试数学试题(含解析).doc)为本站会员(sc****y)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

上海市静安、杨浦、青浦、宝山四区2023学年高三下学期第五次调研考试数学试题(含解析).doc

1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,是椭圆与双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率为,若,则的最小值为( )ABC8D62集合,则=( )ABCD3已知双曲线:(,)的焦距为.点为双

2、曲线的右顶点,若点到双曲线的渐近线的距离为,则双曲线的离心率是( )ABC2D34已知直线和平面,若,则“”是“”的( )A充分不必要条件B必要不充分条件C充分必要条件D不充分不必要5设,随机变量的分布列是01则当在内增大时,( )A减小,减小B减小,增大C增大,减小D增大,增大6如图,在直角梯形ABCD中,ABDC,ADDC,ADDC2AB,E为AD的中点,若,则的值为()A BCD7展开式中x2的系数为( )A1280B4864C4864D12808已知等比数列满足,则( )ABCD9设F为双曲线C:(a0,b0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点若

3、|PQ|=|OF|,则C的离心率为ABC2D10函数的图象大致是()ABCD11已知是平面内互不相等的两个非零向量,且与的夹角为,则的取值范围是( )ABCD12函数的部分图象如图所示,则的单调递增区间为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知的展开式中项的系数与项的系数分别为135与,则展开式所有项系数之和为_.14己知函数,若关于的不等式对任意的恒成立,则实数的取值范围是_.15在平面直角坐标系xOy中,A,B为x轴正半轴上的两个动点,P(异于原点O)为y轴上的一个定点若以AB为直径的圆与圆x2(y2)21相外切,且APB的大小恒为定值,则线段OP的长为_16

4、在平面直角坐标系中,已知,若圆上有且仅有四个不同的点C,使得ABC的面积为5,则实数a的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,四棱锥中,平面,.()证明:;()若是中点,与平面所成的角的正弦值为,求的长.18(12分)已知ABC的内角A,B,C的对边分别为a,b,c,若c2a,bsinBasinAasinC()求sinB的值;()求sin(2B+)的值19(12分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为(1)求直线的极坐标方程;(2)若直线与曲

5、线交于,两点,求的面积20(12分)已知为椭圆的左、右焦点,离心率为,点在椭圆上.(1)求椭圆的方程;(2)过的直线分别交椭圆于和,且,问是否存在常数,使得成等差数列?若存在,求出的值;若不存在,请说明理由.21(12分)已知函数,其中为自然对数的底数.(1)若函数在区间上是单调函数,试求的取值范围;(2)若函数在区间上恰有3个零点,且,求的取值范围.22(10分)已知函数.(1)求函数的最小正周期以及单调递增区间;(2)已知,若,求的面积.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【

6、答案解析】由椭圆的定义以及双曲线的定义、离心率公式化简,结合基本不等式即可求解.【题目详解】设椭圆的长半轴长为,双曲线的半实轴长为,半焦距为,则,设由椭圆的定义以及双曲线的定义可得:,则 当且仅当时,取等号.故选:C【答案点睛】本题主要考查了椭圆的定义以及双曲线的定义、离心率公式,属于中等题.2、C【答案解析】先化简集合A,B,结合并集计算方法,求解,即可【题目详解】解得集合,所以,故选C【答案点睛】本道题考查了集合的运算,考查了一元二次不等式解法,关键化简集合A,B,难度较小3、A【答案解析】由点到直线距离公式建立的等式,变形后可求得离心率【题目详解】由题意,一条渐近线方程为,即,即,故选:

7、A【答案点睛】本题考查求双曲线的离心率,掌握渐近线方程与点到直线距离公式是解题基础4、B【答案解析】由线面关系可知,不能确定与平面的关系,若一定可得,即可求出答案.【题目详解】,不能确定还是,当时,存在,由又可得,所以“”是“”的必要不充分条件,故选:B【答案点睛】本题主要考查了必要不充分条件,线面垂直,线线垂直的判定,属于中档题.5、C【答案解析】,判断其在内的单调性即可【题目详解】解:根据题意在内递增,是以为对称轴,开口向下的抛物线,所以在上单调递减,故选:C【答案点睛】本题考查了利用随机变量的分布列求随机变量的期望与方差,属于中档题6、B【答案解析】建立平面直角坐标系,用坐标表示,利用,

8、列出方程组求解即可.【题目详解】建立如图所示的平面直角坐标系,则D(0,0).不妨设AB1,则CDAD2,所以C(2,0),A(0,2),B(1,2),E(0,1), (2,2)(2,1)(1,2),解得则.故选:B【答案点睛】本题主要考查了由平面向量线性运算的结果求参数,属于中档题.7、A【答案解析】根据二项式展开式的公式得到具体为:化简求值即可.【题目详解】根据二项式的展开式得到可以第一个括号里出项,第二个括号里出项,或者第一个括号里出,第二个括号里出,具体为: 化简得到-1280 x2故得到答案为:A.【答案点睛】求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项.可依据

9、条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.8、B【答案解析】由a1+a3+a5=21得 a3+a5+a7=,选B.9、A【答案解析】准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率【题目详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心,又点在圆上,即,故选A【答案点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需

10、强化练习,才能在解决此类问题时事半功倍,信手拈来10、C【答案解析】根据函数奇偶性可排除AB选项;结合特殊值,即可排除D选项.【题目详解】,函数为奇函数,排除选项A,B;又当时,故选:C.【答案点睛】本题考查了依据函数解析式选择函数图象,注意奇偶性及特殊值的用法,属于基础题.11、C【答案解析】试题分析:如下图所示,则,因为与的夹角为,即,所以,设,则,在三角形中,由正弦定理得,所以,所以,故选C考点:1向量加减法的几何意义;2正弦定理;3正弦函数性质12、D【答案解析】由图象可以求出周期,得到,根据图象过点可求,根据正弦型函数的性质求出单调增区间即可.【题目详解】由图象知,所以,又图象过点,

11、所以,故可取,所以令,解得所以函数的单调递增区间为故选:【答案点睛】本题主要考查了三角函数的图象与性质,利用“五点法”求函数解析式,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、64【答案解析】由题意先求得的值,再令求出展开式中所有项的系数和.【题目详解】的展开式中项的系数与项的系数分别为135与,由两式可组成方程组,解得或,令,求得展开式中所有的系数之和为.故答案为:64【答案点睛】本题考查了二项式定理,考查了赋值法求多项式展开式的系数和,属于基础题.14、【答案解析】首先判断出函数为定义在上的奇函数,且在定义域上单调递增,由此不等式对任意的恒成立,可转化为在上恒成立,进

12、而建立不等式组,解出即可得到答案【题目详解】解:函数的定义域为,且,函数为奇函数,当时,函数,显然此时函数为增函数,函数为定义在上的增函数,不等式即为,在上恒成立,解得故答案为【答案点睛】本题考查函数单调性及奇偶性的综合运用,考查不等式的恒成立问题,属于常规题目15、【答案解析】分析:设O2(a,0),圆O2的半径为r(变量),OP=t(常数),利用差角的正切公式,结合以AB为直径的圆与圆x2+(y-2)2=1相外切且APB的大小恒为定值,即可求出线段OP的长详解:设O2(a,0),圆O2的半径为r(变量),OP=t(常数),则APB的大小恒为定值,t,|OP|=故答案为点睛:本题考查圆与圆的

13、位置关系,考查差角的正切公式,考查学生的计算能力,属于中档题16、(,)【答案解析】求出AB的长度,直线方程,结合ABC的面积为5,转化为圆心到直线的距离进行求解即可【题目详解】解:AB的斜率k,|AB|5,设ABC的高为h,则ABC的面积为5,S|AB|hh5,即h2,直线AB的方程为yax,即4x3y+3a0若圆x2+y29上有且仅有四个不同的点C,则圆心O到直线4x3y+3a0的距离d,则应该满足dRh321,即1,得|3a|5得a,故答案为:(,)【答案点睛】本题主要考查直线与圆的位置关系的应用,求出直线方程和AB的长度,转化为圆心到直线的距离是解决本题的关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()见解析;()【答案解析】()取的中点,连接,由,得三点共线,且,又,再利用线面垂直的判定定理证明.()设,则,在底面中,在中,由余弦定理得:,在中,由余弦定理得,两式相加求得,再过作,则平面,即点到平面的距离,由是中点,得到到平面的距离,然后根据与平面所成的角的正弦值为求解.【题目详解】()取的中点,连接,由,得三点共线,且,又,所以平面,所以.()设,在底面中,在中,由余弦定理得:,在中,由余弦定理得,两式相加得:,所以 ,过作,则平面,即点到平面的距离,因

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2