ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:15.98KB ,
资源ID:1683423      下载积分:8 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/1683423.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023年青海省高考数学二轮复习三角函数新人教版.docx)为本站会员(sc****y)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2023年青海省高考数学二轮复习三角函数新人教版.docx

1、三角函数高考试题中的三角函数题相比照拟传统,难度较低,位置靠前,重点突出。因此,在复习过程中既要注重三角知识的根底性,突出三角函数的图象、周期性、单调性、奇偶性、对称性等性质。以及化简、求值和最值等重点内容的复习,又要注重三角知识的工具性,突出三角与代数、几何、向量的综合联系,以及三角知识的应用意识。一、知识整合1熟练掌握三角变换的所有公式,理解每个公式的意义,应用特点,常规使用方法等;熟悉三角变换常用的方法化弦法,降幂法,角的变换法等;并能应用这些方法进行三角函数式的求值、化简、证明;掌握三角变换公式在三角形中应用的特点,并能结合三角形的公式解决一些实际问题2熟练掌握正弦函数、余弦函数、正切

2、函数、余切函数的性质,并能用它研究复合函数的性质;熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、特点,并会用五点画出函数的图象;理解图象平移变换、伸缩变换的意义,并会用这两种变换研究函数图象的变化二、 高考考点分析2022年各地高考中本局部所占分值在1722分,主要以选择题和解答题的形式出现。主要考察内容按综合难度分,我认为有以下几个层次:第一层次:通过诱导公式和倍角公式的简单运用,解决有关三角函数根本性质的问题。如判断符号、求值、求周期、判断奇偶性等。第二层次:三角函数公式变形中的某些常用技巧的运用。如辅助角公式、平方公式逆用、切弦互化等。第三层次:充分利用三角函数作为一种特殊函

3、数的图象及周期性、奇偶性、单调性、有界性等特殊性质,解决较复杂的函数问题。如分段函数值,求复合函数值域等。三、方法技巧1.三角函数恒等变形的根本策略。(1)常值代换:特别是用“1的代换,如1=cos2+sin2=tanxcotx=tan45等。(2)项的分拆与角的配凑。如分拆项:sin2x+2cos2x=(sin2x+cos2x)+cos2x=1+cos2x;配凑角:=(+),=等。(3)降次与升次。(4)化弦(切)法。(4)引入辅助角。asin+bcos=sin(+),这里辅助角所在象限由a、b的符号确定,角的值由tan=确定。2.证明三角等式的思路和方法。(1)思路:利用三角公式进行化名,

4、化角,改变运算结构,使等式两边化为同一形式。(2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。3.证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。4.解答三角高考题的策略。(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析。(2)寻找联系:运用相关公式,找出差异之间的内在联系。(3)合理转化:选择恰当的公式,促使差异的转化。四、例题分析例1,求(1);(2)的值.解:(1); (2) .说明:利用齐次式的结构特点(如果不具备,通过构造的方法得到),进行弦、切互化,就会使解题过程简化

5、。例2求函数的值域。解:设,那么原函数可化为,因为,所以当时,当时,所以,函数的值域为。例3函数。(1)求的最小正周期、的最大值及此时x的集合;(2)证明:函数的图像关于直线对称。解: (1)所以的最小正周期,因为,所以,当,即时,最大值为;(2)证明:欲证明函数的图像关于直线对称,只要证明对任意,有成立,因为,所以成立,从而函数的图像关于直线对称。例4 函数y=cos2x+sinxcosx+1 (xR),(1)当函数y取得最大值时,求自变量x的集合;(2)该函数的图像可由y=sinx(xR)的图像经过怎样的平移和伸缩变换得到?解:(1)y=cos2x+sinxcosx+1= (2cos2x1

6、)+ +(2sinxcosx)+1=cos2x+sin2x+=(cos2xsin+sin2xcos)+=sin(2x+)+所以y取最大值时,只需2x+=+2k,(kZ),即 x=+k,(kZ)。所以当函数y取最大值时,自变量x的集合为x|x=+k,kZ(2)将函数y=sinx依次进行如下变换:(i)把函数y=sinx的图像向左平移,得到函数y=sin(x+)的图像;(ii)把得到的图像上各点横坐标缩短到原来的倍(纵坐标不变),得到函数y=sin(2x+)的图像;(iii)把得到的图像上各点纵坐标缩短到原来的倍(横坐标不变),得到函数y=sin(2x+)的图像; (iv)把得到的图像向上平移个单

7、位长度,得到函数y=sin(2x+)+的图像。综上得到y=cos2x+sinxcosx+1的图像。说明:此题是2022年全国高考试题,属中档偏容易题,主要考查三角函数的图像和性质。这类题一般有两种解法:一是化成关于sinx,cosx的齐次式,降幂后最终化成y=sin (x+)+k的形式,二是化成某一个三角函数的二次三项式。此题(1)还可以解法如下:当cosx=0时,y=1;当cosx0时,y=+1=+1化简得:2(y1)tan2xtanx+2y3=0tanxR,=38(y1)(2y3) 0,解之得:yymax=,此时对应自变量x的值集为x|x=k+,kZ例5函数 ()将f(x)写成的形式,并求

8、其图象对称中心的横坐标; ()如果ABC的三边a、b、c满足b2=ac,且边b所对的角为x,试求x的范围及此时函数f(x)的值域.解: ()由=0即即对称中心的横坐标为()由b2=ac 即的值域为.综上所述, , 值域为 . 说明:此题综合运用了三角函数、余弦定理、根本不等式等知识,还需要利用数形结合的思想来解决函数值域的问题,有利于培养学生的运算能力,对知识进行整合的能力。例6在中,a、b、c分别是角A、B、C的对边,且,(1)求的值;(2)假设,且a=c,求的面积。解:(1)由正弦定理及,有,即,所以,又因为,所以,因为,所以,又,所以。(2)在中,由余弦定理可得,又,所以有,所以的面积为。例7向量,且,(1)求函数的表达式;(2)假设,求的最大值与最小值。解:(1),又,所以,所以,即;(2)由(1)可得,令导数,解得,列表如下:t1(1,1)1(1,3)导数00+极大值递减极小值递增而所以。例8向量,(1) 求的值;(2) (2)假设的值。解:(1)因为所以又因为,所以,即;(2) ,又因为,所以 ,所以,所以例9平面直角坐标系有点(1) 求向量和的夹角的余弦用表示的函数;(2) 求的最值.解:(1), 即 (2) , 又 , , , .说明:三角函数与向量之间的联系很紧密,解题时要时刻注意。

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2