ImageVerifierCode 换一换
格式:DOC , 页数:22 ,大小:2.18MB ,
资源ID:18240      下载积分:8 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/18240.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023学年黑龙江齐齐哈尔普高联谊校高考数学五模试卷(含解析).doc)为本站会员(la****1)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2023学年黑龙江齐齐哈尔普高联谊校高考数学五模试卷(含解析).doc

1、2023学年高考数学模拟测试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1点在曲线上,过作轴垂线,设与曲线交于点,且点的纵坐标始终为0,则称点为曲线上的“水平黄金点”,则曲线上的“水平黄金点”的个数为( )A0B1C2D32洛书,古称龟书,是阴阳五行

2、术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是( )ABCD3棱长为2的正方体内有一个内切球,过正方体中两条异面直线,的中点作直线,则该直线被球面截在球内的线段的长为( )ABCD14命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是( )ABCD5已知双曲线(,)的左、右焦点分别为,以(为坐标原点)为直径的圆交双曲线于两点,若直线与圆相切,则该双曲线的离心率为( )ABCD6函数在上的图象大致为(

3、)ABCD7已知定点,是圆上的任意一点,点关于点的对称点为,线段的垂直平分线与直线相交于点,则点的轨迹是( )A椭圆B双曲线C抛物线D圆8已知a,bR,则( )Ab3aBb6aCb9aDb12a9已知点P在椭圆:=1(ab0)上,点P在第一象限,点P关于原点O的对称点为A,点P关于x轴的对称点为Q,设,直线AD与椭圆的另一个交点为B,若PAPB,则椭圆的离心率e=( )ABCD10半正多面体(semiregular solid) 亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为

4、面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为( )ABCD11在直角梯形中,点为上一点,且,当的值最大时,( )AB2CD12抛物线的焦点为F,点为该抛物线上的动点,若点,则的最小值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知数列的前项和为且满足,则数列的通项_14记实数中的最大数为,最小数为.已知实数且三数能构成三角形的三边长,若,则的取值范围是.15若x5=a0+a1(x-2)+a2(x-2)2+a5(x-2)5,则a1=_,a1+a2+a5=_16在中,内角所对的边分别是.若,则_,面积的最大值为_

5、.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知抛物线和圆,倾斜角为45的直线过抛物线的焦点,且与圆相切(1)求的值;(2)动点在抛物线的准线上,动点在上,若在点处的切线交轴于点,设求证点在定直线上,并求该定直线的方程18(12分)如图,在四棱锥PABCD中,四边形ABCD为平行四边形,BDDC,PCD为正三角形,平面PCD平面ABCD,E为PC的中点 (1)证明:AP平面EBD;(2)证明:BEPC19(12分)已知椭圆的短轴长为,左右焦点分别为,点是椭圆上位于第一象限的任一点,且当时,.(1)求椭圆的标准方程;(2)若椭圆上点与点关于原点对称,过点作垂直于

6、轴,垂足为,连接并延长交于另一点,交轴于点.()求面积最大值;()证明:直线与斜率之积为定值.20(12分)已知矩阵的逆矩阵.若曲线:在矩阵A对应的变换作用下得到另一曲线,求曲线的方程.21(12分)已知函数.(1)当时,判断在上的单调性并加以证明;(2)若,求的取值范围.22(10分)已知函数.(1)求函数的单调区间;(2)若,证明.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】设,则,则,即可得,设,利用导函数判断的零点的个数,即为所求.【题目详解】设,则,所以,依题意可得

7、,设,则,当时,则单调递减;当时,则单调递增,所以,且,有两个不同的解,所以曲线上的“水平黄金点”的个数为2.故选:C【答案点睛】本题考查利用导函数处理零点问题,考查向量的坐标运算,考查零点存在性定理的应用.2、A【答案解析】基本事件总数,利用列举法求出其和等于11包含的基本事件有4个,由此能求出其和等于11的概率【题目详解】解:从四个阴数和五个阳数中分别随机选取1个数,基本事件总数,其和等于11包含的基本事件有:,共4个,其和等于的概率故选:【答案点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题3、C【答案解析】连结并延长PO,交对棱C1D1于R,则R为对棱的中

8、点,取MN的中点H,则OHMN,推导出OHRQ,且OHRQ,由此能求出该直线被球面截在球内的线段的长【题目详解】如图,MN为该直线被球面截在球内的线段连结并延长PO,交对棱C1D1于R,则R为对棱的中点,取MN的中点H,则OHMN,OHRQ,且OHRQ,MH,MN故选:C【答案点睛】本题主要考查该直线被球面截在球内的线段的长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题4、A【答案解析】分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.【题目详解】对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题

9、.所以为真命题. 、都是假命题.故选:A【答案点睛】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.5、D【答案解析】连接,可得,在中,由余弦定理得,结合双曲线的定义,即得解.【题目详解】连接,则,所以,在中,故在中,由余弦定理可得. 根据双曲线的定义,得,所以双曲线的离心率故选:D【答案点睛】本题考查了双曲线的性质及双曲线的离心率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.6、A【答案解析】首先判断函数的奇偶性,再根据特殊值即可利用排除法解得;【题目详解】解:依题意,故函数为偶函数,图象关于轴对称,排除C;而,排除B;,排除D.故选:

10、.【答案点睛】本题考查函数图象的识别,函数的奇偶性的应用,属于基础题.7、B【答案解析】根据线段垂直平分线的性质,结合三角形中位线定理、圆锥曲线和圆的定义进行判断即可.【题目详解】因为线段的垂直平分线与直线相交于点,如下图所示:所以有,而是中点,连接,故,因此当在如下图所示位置时有,所以有,而是中点,连接,故,因此,综上所述:有,所以点的轨迹是双曲线.故选:B【答案点睛】本题考查了双曲线的定义,考查了数学运算能力和推理论证能力,考查了分类讨论思想.8、C【答案解析】两复数相等,实部与虚部对应相等.【题目详解】由,得,即a,b1b9a故选:C【答案点睛】本题考查复数的概念,属于基础题.9、C【答

11、案解析】设,则,设,根据化简得到,得到答案.【题目详解】设,则,则,设,则,两式相减得到:,即, ,故,即,故,故.故选:.【答案点睛】本题考查了椭圆的离心率,意在考查学生的计算能力和转化能力.10、D【答案解析】根据三视图作出该二十四等边体如下图所示,求出该几何体的棱长,可以将该几何体看作是相应的正方体沿各棱的中点截去8个三棱锥所得到的,可求出其体积.【题目详解】如下图所示,将该二十四等边体的直观图置于棱长为2的正方体中,由三视图可知,该几何体的棱长为,它是由棱长为2的正方体沿各棱中点截去8个三棱锥所得到的,该几何体的体积为,故选:D.【答案点睛】本题考查三视图,几何体的体积,对于二十四等边

12、体比较好的处理方式是由正方体各棱的中点得到,属于中档题.11、B【答案解析】由题,可求出,所以,根据共线定理,设,利用向量三角形法则求出,结合题给,得出,进而得出,最后利用二次函数求出的最大值,即可求出.【题目详解】由题意,直角梯形中,可求得,所以点在线段上, 设 , 则,即,又因为所以,所以,当时,等号成立.所以.故选:B.【答案点睛】本题考查平面向量线性运算中的加法运算、向量共线定理,以及运用二次函数求最值,考查转化思想和解题能力.12、B【答案解析】通过抛物线的定义,转化,要使有最小值,只需最大即可,作出切线方程即可求出比值的最小值【题目详解】解:由题意可知,抛物线的准线方程为,过作垂直

13、直线于,由抛物线的定义可知,连结,当是抛物线的切线时,有最小值,则最大,即最大,就是直线的斜率最大,设在的方程为:,所以,解得:,所以,解得,所以,故选:【答案点睛】本题考查抛物线的基本性质,直线与抛物线的位置关系,转化思想的应用,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】先求得时;再由可得时,两式作差可得,进而求解.【题目详解】当时,解得;由,可知当时,两式相减,得,即,所以数列是首项为,公比为的等比数列,所以,故答案为:【答案点睛】本题考查由与的关系求通项公式,考查等比数列的通项公式的应用.14、【答案解析】试题分析:显然,又,当时,作出可行区域,因抛物线

14、与直线及在第一象限内的交点分别是(1,1)和,从而当时,作出可行区域,因抛物线与直线及在第一象限内的交点分别是(1,1)和,从而综上所述,的取值范围是考点:不等式、简单线性规划.15、80 211 【答案解析】由,利用二项式定理即可得,分别令、后,作差即可得.【题目详解】由题意,则,令,得,令,得,故.故答案为:80,211.【答案点睛】本题考查了二项式定理的应用,属于中档题.16、1 【答案解析】由正弦定理,结合,可求出;由三角形面积公式以及角A的范围,即可求出面积的最大值.【题目详解】因为,所以由正弦定理可得,所以;所以,当,即时,三角形面积最大.故答案为(1). 1 (2). 【答案点睛】本题主要考查解三角形

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2