1、2023学年高考数学模拟测试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1用数学归纳法证明,则当时,左端应在的基础上加上( )ABCD2用一个平面去截正方体,则截面不可能是
2、( )A正三角形B正方形C正五边形D正六边形3已知集合,则集合( )ABCD4设复数满足,在复平面内对应的点的坐标为则()ABCD5双曲线的渐近线方程为( )ABCD6已知,则下列不等式正确的是( )ABCD7方程的实数根叫作函数的“新驻点”,如果函数的“新驻点”为,那么满足( )ABCD8如图,已知三棱锥中,平面平面,记二面角的平面角为,直线与平面所成角为,直线与平面所成角为,则( )ABCD9如图,圆的半径为,是圆上的定点,是圆上的动点, 点关于直线的对称点为,角的始边为射线,终边为射线,将表示为的函数,则在上的图像大致为( )ABCD10设,为两个平面,则的充要条件是A内有无数条直线与平
3、行B内有两条相交直线与平行C,平行于同一条直线D,垂直于同一平面11设集合,则 ()ABCD12以,为直径的圆的方程是ABCD二、填空题:本题共4小题,每小题5分,共20分。13的展开式中,项的系数是_14如图,在ABC中,E为边AC上一点,且,P为BE上一点,且满足,则的最小值为_15已知数列是各项均为正数的等比数列,若,则的最小值为_.16以,为圆心的两圆均过,与轴正半轴分别交于,且满足,则点的轨迹方程为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,三棱柱中,平面,分别为,的中点.(1)求证: 平面;(2)若平面平面,求直线与平面所成角的正弦值.18(
4、12分)已知椭圆经过点,离心率为.(1)求椭圆的方程;(2)过点的直线交椭圆于、两点,若,在线段上取点,使,求证:点在定直线上.19(12分)已知数列满足且(1)求数列的通项公式;(2)求数列的前项和.20(12分)已知函数(为实常数).(1)讨论函数在上的单调性;(2)若存在,使得成立,求实数的取值范围.21(12分)在中,角、的对边分别为、,且.(1)若,求的值;(2)若,求的值.22(10分)已知函数(1)求函数的单调递增区间(2)记函数的图象为曲线,设点是曲线上不同两点,如果在曲线上存在点,使得;曲线在点M处的切线平行于直线AB,则称函数存在“中值和谐切线”,当时,函数是否存在“中值和
5、谐切线”请说明理由2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】首先分析题目求用数学归纳法证明1+1+3+n1=时,当n=k+1时左端应在n=k的基础上加上的式子,可以分别使得n=k,和n=k+1代入等式,然后把n=k+1时等式的左端减去n=k时等式的左端,即可得到答案【题目详解】当n=k时,等式左端=1+1+k1,当n=k+1时,等式左端=1+1+k1+k1+1+k1+1+(k+1)1,增加了项(k1+1)+(k1+1)+(k1+3)+(k+1)1故选:C【答案点睛】本题主要
6、考查数学归纳法,属于中档题./2、C【答案解析】试题分析:画出截面图形如图显然A正三角形,B正方形:D正六边形,可以画出五边形但不是正五边形;故选C考点:平面的基本性质及推论3、D【答案解析】根据集合的混合运算,即可容易求得结果.【题目详解】,故可得.故选:D.【答案点睛】本题考查集合的混合运算,属基础题.4、B【答案解析】根据共轭复数定义及复数模的求法,代入化简即可求解.【题目详解】在复平面内对应的点的坐标为,则,代入可得,解得.故选:B.【答案点睛】本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题.5、C【答案解析】根据双曲线的标准方程,即可写出渐近线方程.【题目
7、详解】 双曲线,双曲线的渐近线方程为,故选:C【答案点睛】本题主要考查了双曲线的简单几何性质,属于容易题.6、D【答案解析】利用特殊值代入法,作差法,排除不符合条件的选项,得到符合条件的选项【题目详解】已知,赋值法讨论的情况:(1)当时,令,则,排除B、C选项;(2)当时,令,则,排除A选项.故选:D.【答案点睛】比较大小通常采用作差法,本题主要考查不等式与不等关系,不等式的基本性质,利用特殊值代入法,排除不符合条件的选项,得到符合条件的选项,是一种简单有效的方法,属于中等题7、D【答案解析】由题设中所给的定义,方程的实数根叫做函数的“新驻点”,根据零点存在定理即可求出的大致范围【题目详解】解
8、:由题意方程的实数根叫做函数的“新驻点”,对于函数,由于,设,该函数在为增函数, ,在上有零点,故函数的“新驻点”为,那么故选:【答案点睛】本题是一个新定义的题,理解定义,分别建立方程解出存在范围是解题的关键,本题考查了推理判断的能力,属于基础题.8、A【答案解析】作于,于,分析可得,再根据正弦的大小关系判断分析得,再根据线面角的最小性判定即可.【题目详解】作于,于.因为平面平面,平面.故,故平面.故二面角为.又直线与平面所成角为,因为,故.故,当且仅当重合时取等号.又直线与平面所成角为,且为直线与平面内的直线所成角,故,当且仅当平面时取等号.故.故选:A【答案点睛】本题主要考查了线面角与线线
9、角的大小判断,需要根据题意确定角度的正弦的关系,同时运用线面角的最小性进行判定.属于中档题.9、B【答案解析】根据图象分析变化过程中在关键位置及部分区域,即可排除错误选项,得到函数图象,即可求解.【题目详解】由题意,当时,P与A重合,则与B重合,所以,故排除C,D选项;当时,由图象可知选B.故选:B【答案点睛】本题主要考查三角函数的图像与性质,正确表示函数的表达式是解题的关键,属于中档题.10、B【答案解析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断【题目详解】由面面平行的判定定理知:内两条相交直线都与平行是的充分条件
10、,由面面平行性质定理知,若,则内任意一条直线都与平行,所以内两条相交直线都与平行是的必要条件,故选B【答案点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,则”此类的错误11、B【答案解析】直接进行集合的并集、交集的运算即可【题目详解】解:; 故选:B【答案点睛】本题主要考查集合描述法、列举法的定义,以及交集、并集的运算,是基础题.12、A【答案解析】设圆的标准方程,利用待定系数法一一求出,从而求出圆的方程.【题目详解】设圆的标准方程为,由题意得圆心为,的中点,根据中点坐标公式可得,又,所以圆的标准方程为:,化简整理得,所以本题答案为A.【答案点
11、睛】本题考查待定系数法求圆的方程,解题的关键是假设圆的标准方程,建立方程组,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、240【答案解析】利用二项式展开式的通项公式,令x的指数等于3,计算展开式中含有项的系数即可.【题目详解】由题意得:,只需,可得,代回原式可得,故答案:240.【答案点睛】本题主要考查二项式展开式的通项公式及简单应用,相对不难.14、【答案解析】试题分析:根据题意有,因为三点共线,所以有,从而有,所以的最小值是考点:向量的运算,基本不等式【方法点睛】该题考查的是有关应用基本不等式求最值的问题,属于中档题目,在解题的过程中,关键步骤在于对题中条件的转化,根
12、据三点共线,结合向量的性质可知,从而等价于已知两个正数的整式形式和为定值,求分式形式和的最值的问题,两式乘积,最后应用基本不等式求得结果,最后再加,得出最后的答案15、40【答案解析】设等比数列的公比为,根据,可得,因为,根据均值不等式,即可求得答案.【题目详解】设等比数列的公比为,等比数列的各项为正数,当且仅当,即时,取得最小值.故答案为:.【答案点睛】本题主要考查了求数列值的最值问题,解题关键是掌握等比数列通项公式和灵活使用均值不等式,考查了分析能力和计算能力,属于中档题.16、【答案解析】根据圆的性质可知在线段的垂直平分线上,由此得到,同理可得,由对数运算法则可知,从而化简得到,由此确定
13、轨迹方程.【题目详解】,和的中点坐标为,且在线段的垂直平分线上,即,同理可得:,点的轨迹方程为故答案为:【答案点睛】本题考查动点轨迹方程的求解问题,关键是能够利用圆的性质和对数运算法则构造出满足的方程,由此得到结果.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2).【答案解析】(1)连接,则且为的中点,又为的中点,又平面,平面,故平面 (2)由平面,得,以为原点,分别以,所在直线为轴,轴,轴建立如图所示的空间直角坐标系,设,则,取平面的一个法向量为,由,得:,令,得同理可得平面的一个法向量为平面平面,解得,得,又,设直线与平面所成角为,则.所以,直线与
14、平面所成角的正弦值是18、(1);(2)见解析.【答案解析】(1)根据题意得出关于、的方程组,解出、的值,进而可得出椭圆的标准方程;(2)设点、,设直线的方程为,将该直线的方程与椭圆的方程联立,并列出韦达定理,由向量的坐标运算可求得点的坐标表达式,并代入韦达定理,消去,可得出点的横坐标,进而可得出结论.【题目详解】(1)由题意得,解得,.所以椭圆的方程是;(2)设直线的方程为,、,由,得.,则有,由,得,由,可得,综上,点在定直线上.【答案点睛】本题考查椭圆方程的求解,同时也考查了点在定直线上的证明,考查计算能力与推理能力,属于中等题.19、(1);(2)【答案解析】(1)根据已知可得数列为等