1、2023学年高考数学模拟测试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1中国古代数学著作孙子算经中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,
2、例如现将该问题以程序框图的算法给出,执行该程序框图,则输出的等于( )ABCD2已知函数,若对任意,总存在,使得成立,则实数的取值范围为( )ABCD3已知、分别为双曲线:(,)的左、右焦点,过的直线交于、两点,为坐标原点,若,则的离心率为( )A2BCD4已知实数满足则的最大值为( )A2BC1D05已知为两条不重合直线,为两个不重合平面,下列条件中,的充分条件是( )ABCD6已知集合A=y|y=|x|1,xR,B=x|x2,则下列结论正确的是( )A3A B3B CAB=B DAB=B7已知为定义在上的偶函数,当时,则( )ABCD8如图是正方体截去一个四棱锥后的得到的几何体的三视图,则
3、该几何体的体积是( )ABCD9设,命题“存在,使方程有实根”的否定是( )A任意,使方程无实根B任意,使方程有实根C存在,使方程无实根D存在,使方程有实根10若为虚数单位,网格纸上小正方形的边长为1,图中复平面内点表示复数,则表示复数的点是( )AEBFCGDH11从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图:根据频率分布直方图,可知这部分男生的身高的中位数的估计值为ABCD12设全集U=R,集合,则()ABCD二、填空题:本题共4小题,每小题5分,共20分。13若在上单调递减,则的取值范围是_14已知函数,若在定义域内恒有,则实数的取值范围是_15展
4、开式中的系数的和大于8而小于32,则_16如图,在平行四边形中,,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在边长为的正方形,分别为的中点,分别为的中点,现沿折叠,使三点重合,构成一个三棱锥. (1)判别与平面的位置关系,并给出证明;(2)求多面体的体积.18(12分)已知椭圆的右顶点为,点在轴上,线段与椭圆的交点在第一象限,过点的直线与椭圆相切,且直线交轴于.设过点且平行于直线的直线交轴于点.()当为线段的中点时,求直线的方程;()记的面积为,的面积为,求的最小值.19(12分)已知是各项都为正数的数列,其前项和为,且为与的等差中项(1)求证:数
5、列为等差数列;(2)设,求的前100项和20(12分)设,函数,其中为自然对数的底数.(1)设函数.若,试判断函数与的图像在区间上是否有交点;求证:对任意的,直线都不是的切线;(2)设函数,试判断函数是否存在极小值,若存在,求出的取值范围;若不存在,请说明理由.21(12分)如图所示,三棱柱中,平面,点,分别在线段,上,且,是线段的中点.()求证:平面;()若,求直线与平面所成角的正弦值.22(10分)已知,且(1)请给出的一组值,使得成立;(2)证明不等式恒成立2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符
6、合题目要求的。1、C【答案解析】从21开始,输出的数是除以3余2,除以5余3,满足条件的是23,故选C.2、C【答案解析】将函数解析式化简,并求得,根据当时可得的值域;由函数在上单调递减可得的值域,结合存在性成立问题满足的集合关系,即可求得的取值范围.【题目详解】依题意,则,当时,故函数在上单调递增,当时,;而函数在上单调递减,故,则只需,故,解得,故实数的取值范围为.故选:C.【答案点睛】本题考查了导数在判断函数单调性中的应用,恒成立与存在性成立问题的综合应用,属于中档题.3、D【答案解析】作出图象,取AB中点E,连接EF2,设F1Ax,根据双曲线定义可得x2a,再由勾股定理可得到c27a2
7、,进而得到e的值【题目详解】解:取AB中点E,连接EF2,则由已知可得BF1EF2,F1AAEEB,设F1Ax,则由双曲线定义可得AF22a+x,BF1BF23x2ax2a,所以x2a,则EF22a,由勾股定理可得(4a)2+(2a)2(2c)2,所以c27a2,则e故选:D【答案点睛】本题考查双曲线定义的应用,考查离心率的求法,数形结合思想,属于中档题对于圆锥曲线中求离心率的问题,关键是列出含有 中两个量的方程,有时还要结合椭圆、双曲线的定义对方程进行整理,从而求出离心率.4、B【答案解析】作出可行域,平移目标直线即可求解.【题目详解】解:作出可行域:由得,由图形知,经过点时,其截距最大,此
8、时最大得,当时,故选:B【答案点睛】考查线性规划,是基础题.5、D【答案解析】根据面面垂直的判定定理,对选项中的命题进行分析、判断正误即可.【题目详解】对于A,当,时,则平面与平面可能相交,故不能作为的充分条件,故A错误;对于B,当,时,则,故不能作为的充分条件,故B错误;对于C,当,时,则平面与平面相交,故不能作为的充分条件,故C错误;对于D,当,则一定能得到,故D正确.故选:D.【答案点睛】本题考查了面面垂直的判断问题,属于基础题.6、C【答案解析】试题分析:集合 考点:集合间的关系7、D【答案解析】判断,利用函数的奇偶性代入计算得到答案.【题目详解】,故选:【答案点睛】本题考查了利用函数
9、的奇偶性求值,意在考查学生对于函数性质的灵活运用.8、C【答案解析】根据三视图作出几何体的直观图,结合三视图的数据可求得几何体的体积.【题目详解】根据三视图还原几何体的直观图如下图所示:由图可知,该几何体是在棱长为的正方体中截去四棱锥所形成的几何体,该几何体的体积为.故选:C.【答案点睛】本题考查利用三视图计算几何体的体积,考查空间想象能力与计算能力,属于基础题.9、A【答案解析】只需将“存在”改成“任意”,有实根改成无实根即可.【题目详解】由特称命题的否定是全称命题,知“存在,使方程有实根”的否定是“任意,使方程无实根”.故选:A【答案点睛】本题考查含有一个量词的命题的否定,此类问题要注意在
10、两个方面作出变化:1.量词,2.结论,是一道基础题.10、C【答案解析】由于在复平面内点的坐标为,所以,然后将代入化简后可找到其对应的点.【题目详解】由,所以,对应点.故选:C【答案点睛】此题考查的是复数与复平面内点的对就关系,复数的运算,属于基础题.11、C【答案解析】由题可得,解得,则,所以这部分男生的身高的中位数的估计值为,故选C12、A【答案解析】求出集合M和集合N,,利用集合交集补集的定义进行计算即可【题目详解】,则,故选:A【答案点睛】本题考查集合的交集和补集的运算,考查指数不等式和二次不等式的解法,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由题意
11、可得导数在恒成立,解出即可【题目详解】解:由题意,当时,显然,符合题意;当时,在恒成立,故答案为:【答案点睛】本题主要考查利用导数研究函数的单调性,属于中档题14、【答案解析】根据指数函数与对数函数图象可将原题转化为恒成立问题,凑而可知的图象在过原点且与两函数相切的两条切线之间;利用过一点的曲线切线的求法可求得两切线斜率,结合分母不为零的条件可最终确定的取值范围.【题目详解】由指数函数与对数函数图象可知:,恒成立可转化为恒成立,即恒成立,即是夹在函数与的图象之间,的图象在过原点且与两函数相切的两条切线之间.设过原点且与相切的直线与函数相切于点,则切线斜率,解得:;设过原点且与相切的直线与函数相
12、切于点,则切线斜率,解得:;当时,又,满足题意;综上所述:实数的取值范围为.【答案点睛】本题考查恒成立问题的求解,重点考查了导数几何意义应用中的过一点的曲线切线的求解方法;关键是能够结合指数函数和对数函数图象将问题转化为切线斜率的求解问题;易错点是忽略分母不为零的限制,忽略对于临界值能否取得的讨论.15、4【答案解析】由题意可得项的系数与二项式系数是相等的,利用题意,得出不等式组,求得结果.【题目详解】观察式子可知,故答案为:4.【答案点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有展开式中项的系数和,属于基础题目.16、【答案解析】根据ABCD是平行四边形可得出,然后代入AB2,AD
13、1即可求出的值【题目详解】AB2,AD1, 141故答案为:1【答案点睛】本题考查了向量加法的平行四边形法则,相等向量和相反向量的定义,向量数量积的运算,考查了计算能力,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)平行,证明见解析;(2).【答案解析】(1)由题意及图形的翻折规律可知应是的一条中位线,利用线面平行的判定定理即可求证;(2)利用条件及线面垂直的判定定理可知,则平面,在利用锥体的体积公式即可【题目详解】(1)证明:因翻折后、重合,应是的一条中位线,平面,平面,平面;(2)解:,面且,又,【答案点睛】本题主要考查线面平行的判定定理,线面垂直的判定定理及锥体的体积公式,属于基础题18、()直线的方程为()【答案解析】(1)设点,利用中点坐标公式表示点B,并代入椭圆方程解得,从而求出直线的方程;(2)设直线的方程为:,表示点,然后联立方程,利用相切得出,然后求出切点,再设出设直线的方程,求出点,利用两点坐标,求出直线的方程,从而求出,最后利用以上已求点的坐标表示面积,根据基本不等式求最值即可.【题目详解】解:()由椭圆,可得:由题意:设点,当为的中点时,可得:代入椭圆方程,可得:所以:所以.故直线的方程为.()由题意,直线的斜率存在且不为0,故设直线的方程为:令,得:,所以:.联立:,消,整理得:.