1、超长地下室的温度应力和裂缝控制温度应力裂缝 。伴随着现代社会的高速开展,人口的城市集中化逐渐成为一种趋势,导致了城市规模的迅速扩大化。建筑越来越高,住房、公共活动场所越来越多,而地面却是有限的,这样地下空间的充分利用就显得非常重要。在目前,随着用地紧张性的增强,出现了许多超长、超大的地下室。但是超长地下室的开发使用中不可防止的存在很多影响平安性的技术方面的问题,较为常见的就是温度应力等原因导致的地下室顶板或者墙体开裂。混凝土开裂后大大影响了地下室整体的观感,即使对这些裂缝作了修补,地下室整体结构的耐用性依然大大降低了,并且很有可能在以后的使用中引起地下室的渗漏,减少地下室的使用寿命等。本文对超
2、长地下室的裂缝控制、温度应力及其影响进行了具体的分析,包括施工过程中的拆模及混凝土材料性能变化等的影响,并对温度应力的有限元计算分析方法作了介绍。 关键词:超长地下室裂缝温度应力有限元分析 中图分类号:p184.5+3文献标识码:a文章编号: 1引言 早在六十年前,我国的朱伯芳和潘家铮院士等就提出了有关水工中体积混凝土结构的温度控制及其计的完整理论体系。在力学方面,刘光庭等率先把断裂力学运用到了仿真计算中,以及后来的赵代深教授结合仿真分析在影响混凝土建筑的整个进程的应用研究也取得了一系列的技术成果。到了近些年,我国的王铁梦教授对不同种类的裂缝进行了比较全面系统的分析后,有针对性的提出了两个非常
3、重要的设计原那么“抗和“放,即根据具体条件或以“放为主或以“抗为主,在必要时要有效进行“抗、“放的有机结合,以有效减少混凝土的开裂情况。 国外对混凝土的温度应力研究要比我们国内早一些。1934年,马斯洛夫用弹性力学方法解决在水坝建设施工方面的温度应力问题,这对以后的研究及应用都有很大的影响。在六十年代的日本和美国对温度应力分析也进行了更为深入的分析研究,日本的森忠次考虑了不同的温度分布问题,美国的tatro和schrader联合发表的温度场一维有限元分析研究,那么被公认为有关温度场有限元仿真分析的开创性结果。 2超长地下室温度应力 一般情况下,对地下室混凝土结构的温度场和相应的应力场进行分析计
4、算,从而采取有效的控制措施,是减少地下室出现温度裂缝的常用方法。温度场和应力场的计算数据可以为地下室的整体设计和建造提供重要的参考价值,采取有效的控温措施,就可以降低混凝土开裂的可能性。 2.1温度裂缝出现的原因和特点 地下室裂缝很多出现在施工过程中,此时地下室的上部根本还没有承受很大的荷载,因此地下室的开裂可以排除了承载过重这个貌似最合理的原因。真正导致裂缝产生的原因主要还是地下室的温度收缩和混凝土干缩等。特别是在超长地下室的建设施工过程中,上面没有封顶,没有保温隔热的覆盖层,同时混凝土的热容量很小,吸热散热快,昼夜较大的温差导致混凝土内也产生较大的温差。而且超长地下室的整个施工周期比较长,
5、可能跨越不同的季节,季节温差也会很大。温度的下降,由于材料的热胀冷缩原理会引起材料在不同程度上的收缩,但在地下室的建造过程中,会有大量的模板、支撑等限制了墙体、顶板的变形,这时拉应力也顺势而生了,当它超过了混凝土所能承受的抗拉范围,就很可能会导致混凝土的不同程度的开裂。而在正常使用过程中,季节性的温差很大,由于结构已完全形成整体,相互约束,使其不能自由变形,在地下室墙体和楼板内就会产生拉应力,同样可能导致混凝土不同程度的开裂。综上所述,温度在一定范围内的变化并不会直接导致混凝土的开裂,只有在温度变化的过程中,结构的收缩变形受到约束控制时,才会产生拉应力,从而出现开裂的状况。 我们把温度应力引起
6、的裂缝称为温度裂缝,与承载过重引起的裂缝作比较分析可以看到,温度裂缝有自身的一些特点,主要表现在:温度裂缝深浅不一,纵横交错,而且混凝土的早期强度对墙体开裂有着重要的影响。当混凝土等材料在温度应力作用下要求变形却不能进行相应的变化时,温度应力因此而生,它的大小在很大程度上取决于超长地下室整体结构的刚度。当所用材料到达足够强度时,那么地下室的温度开裂就能得到很大的控制。在控制的过程中,温度裂缝还是在不停地变化着的,也就是说超长地下到的温度裂缝变化是一个持续的动态过程而非静态。在这个持续的变化过程中,温度应力的变化情况并不是遵循hooke定律的描述。通常情况下,一维的温度应力变化用线性膨胀系数和前
7、后温差来进行描述计算。 2.2施工过程中的温度应力分析 在实质上,温度场问题也就是我们所熟知的热传导问题,通常是指瞬态和稳态两个方面,瞬态,顾名思义,它和时间的关系不大,但是稳态是一个比较长的时间范围,它和时间因素有着很大的关系。在超长地下室的施工过程中,混凝土不断产生水化热,因为混凝土内部和外表的散热条件不同,所以混凝土中心温度高,外表温度低,形成温度梯度,造成温度变形和温度应力,这属于瞬态的温度场问题,对其分析主要用到数值解法或近似分析解法及有限单元法等。在混凝土浇筑过程中,变化是持续不断的,我们不可能做到在施工过程中进行充分有效的控制,这就要求在超长地下室的整个施工过程开始之前我们就要做
8、好相应的理论估算分析,一方面可以从总体上把握温度应力的变化趋势,防止大局部问题的出现,另一方面,对于极端情况,也可以采取及时有效的措施去减轻危害的程度。就施工过程中超长地下室的墙体的温度裂缝来说,通常采用的措施是在合理的范围内控制浇筑材料的温度变化幅度,另外在浇筑材料中还要添加质量好的煤灰粉,并且加强施工过程中的湿温养护等也是必要的。随着计算机辅助设计的应用越来越普及,相关高校在超长地下室温度应力的研究中,结合热传导计算公式和地下室特有结构设计的边界条件,编制了相应程序利用计算机进行模拟仿真分析,对地下室的温度应力分析计算得到了比较准确的结果,在系统模拟超长地下室的施工过程中温度应力各方面的影
9、响上都取得了很好的效果。 3影响墙体和楼板开裂的其他因素 3.1混凝土的收缩 地下室的建筑材料主要是混凝土,而混凝土并不是一种单一物质,它是多种材料形成的非匀质混合材料。一般情况下,混凝土相对传统的砖瓦等有着很多的优点,比方说它有着很高的强度,抗压能力较强,施工方便等。但它同时也有着自身的缺点,如不易变形,抗拉能力较差等。那么在混凝土的收缩过程中,由于混凝土早期强度较低,就比较容易出现裂缝,导致超长地下室的墙体和楼板开裂等。实际上,混凝土收缩是指在混凝土凝结初期或硬化过程中出现的体积缩小现象,通常可分为混凝土自身收缩、塑性收缩、碳化收缩和失水收缩四类。 混凝土的自身收缩主要是在混凝土的形成过程
10、中因为各种材料的化学反响或者是组成材料与水的反响引起的分子结合而造成的收缩,这种自收缩并不受周围环境的影响变化,它既可能是正的(即收缩,如普通硅酸盐水泥混凝土),也可能是负的(即膨胀,如矿渣水泥混凝土与粉煤灰水泥混凝土)。塑性收缩是指在混凝土的浇筑过程中和浇筑后短期内,主要由于水泥与水的化学反响引发的收缩,之所以叫做塑性收缩,也是因为这种收缩发生在混凝土没有完全凝固之前即在它的塑造过程中发生的。第三种碳化收缩,是指混凝土材料中的水泥遇水反响的同时又与周围的二氧化碳发生反响引起的收缩。不过碳化作用只在适中的湿度(约为50%)才会较快地进行,湿度过高或过低,碳化作用都不易进行,碳化收缩相应也很小。如果混凝土有足够的密实度,碳化就只限于外表层,而外表层的枯燥速率也是最大的,这样碳化收缩通常可忽略不计。最后一个失水收缩是指混凝土结硬以后,随着表层水逐步蒸发,混凝土体积减小,从而造成的收缩。高强混凝土由于水灰比小,一般收缩较大,是需要注意的问题。