ImageVerifierCode 换一换
格式:PDF , 页数:8 ,大小:259.88KB ,
资源ID:191029      下载积分:12 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/191029.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM_G_166_-_00_2011.pdf)为本站会员(益****师)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

ASTM_G_166_-_00_2011.pdf

1、Designation:G16600(Reapproved 2011)Standard Guide forStatistical Analysis of Service Life Data1This standard is issued under the fixed designation G166;the number immediately following the designation indicates the year oforiginal adoption or,in the case of revision,the year of last revision.A numbe

2、r in parentheses indicates the year of last reapproval.Asuperscript epsilon()indicates an editorial change since the last revision or reapproval.1.Scope1.1 This guide presents briefly some generally acceptedmethods of statistical analyses which are useful in the inter-pretation of service life data.

3、It is intended to produce acommon terminology as well as developing a common meth-odology and quantitative expressions relating to service lifeestimation.1.2 This guide does not cover detailed derivations,orspecial cases,but rather covers a range of approaches whichhave found application in service

4、life data analyses.1.3 Only those statistical methods that have found wideacceptance in service life data analyses have been consideredin this guide.1.4 The Weibull life distribution model is emphasized in thisguide and example calculations of situations commonly en-countered in analysis of service

5、life data are covered in detail.1.5 The choice and use of a particular life distribution modelshould be based primarily on how well it fits the data andwhether it leads to reasonable projections when extrapolatingbeyond the range of data.Further justification for selecting amodel should be based on

6、theoretical considerations.2.Referenced Documents2.1 ASTM Standards:2G169 Guide for Application of Basic Statistical Methods toWeathering Tests3.Terminology3.1 Definitions:3.1.1 material propertycustomarily,service life is consid-ered to be the period of time during which a system meetscritical spec

7、ifications.Correct measurements are essential toproducing meaningful and accurate service life estimates.3.1.1.1 DiscussionThere exists many ASTM recognizedand standardized measurement procedures for determiningmaterial properties.As these practices have been developedwithin committees with appropri

8、ate expertise,no further elabo-ration will be provided.3.1.2 beginning of lifethis is usually determined to be thetime of manufacture.Exceptions may include time of deliveryto the end user or installation into field service.3.1.3 end of lifeOccasionally this is simple and obvioussuch as the breaking

9、 of a chain or burning out of a light bulbfilament.In other instances,the end of life may not be socatastrophic and free from argument.Examples may includefading,yellowing,cracking,crazing,etc.Such cases needquantitative measurements and agreement between evaluatorand user as to the precise definiti

10、on of failure.It is also possibleto model more than one failure mode for the same specimen.(for example,The time to produce a given amount of yellowingmay be measured on the same specimen that is also tested forcracking.)3.1.4 F(t)The probability that a random unit drawn fromthe population will fail

11、 by time(t).Also F(t)=the decimalfraction of units in the population that will fail by time(t).Thedecimal fraction multiplied by 100 is numerically equal to thepercent failure by time(t).3.1.5 R(t)The probability that a random unit drawn fromthe population will survive at least until time(t).Also R(

12、t)=the fraction of units in the population that will survive at leastuntil time(t)Rt!5 1 2 Ft!(1)3.1.6 pdfthe probability density function(pdf),denoted byf(t),equals the probability of failure between any two points oftime t(1)and t(2).Mathematicallyft!5dFt!dt.For the normaldistribution,the pdf is t

13、he“bell shape”curve.3.1.7 cdfthe cumulative distribution function(cdf),de-noted by F(t),represents the probability of failure(or thepopulation fraction failing)by time=(t).See section 3.1.4.3.1.8 weibull distributionFor the purposes of this guide,the Weibull distribution is represented by the equati

14、on:Ft!5 1 2 e2StcDb(2)1This guide is under the jurisdiction of ASTM Committee G03 on Weatheringand Durability and is the direct responsibility of Subcommittee G03.08 on ServiceLife Prediction.Current edition approved July 1,2011.Published August 2011.Originallyapproved in 2000.Last previous edition

15、approved in 2005 as G166 00(2005).DOI:10.1520/G0166-00R11.2For referenced ASTM standards,visit the ASTM website,www.astm.org,orcontact ASTM Customer Service at serviceastm.org.For Annual Book of ASTMStandards volume information,refer to the standards Document Summary page onthe ASTM website.Copyrigh

16、t ASTM International,100 Barr Harbor Drive,PO Box C700,West Conshohocken,PA 19428-2959.United States1 where:F(t)=defined in paragraph 3.1.4t=units of time used for service lifec=scale parameterb=shape parameter3.1.8.1 The shape parameter(b),section 3.1.6,is so calledbecause this parameter determines the overall shape of thecurve.Examples of the effect of this parameter on the distri-bution curve are shown in Fig.1,section 5.3.3.1.8.2 The scale parameter(c),section 3.1.6,is so calledbecause it po

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2