ImageVerifierCode 换一换
格式:DOC , 页数:22 ,大小:2.22MB ,
资源ID:19733      下载积分:13 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/19733.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023届山东枣庄八中北校区高三第二次模拟考试数学试卷(含解析).doc)为本站会员(sc****y)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2023届山东枣庄八中北校区高三第二次模拟考试数学试卷(含解析).doc

1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知是第二象限的角,则( )ABCD2中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是

2、2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是( )A每相邻两年相比较,2014年到2015年铁路运营里程增加最显著B从2014年到2018年这5年,高铁运营里程与年价正相关C2018年高铁运营里程比2014年高铁运营里程增长80%以上D从2014年到2018年这5年,高铁运营里程数依次成等差数列3定义在R上的偶函数f(x)满足f(x+2)f(x),当x3,2时,f(x)x2,则( )ABf(sin3)f(cos3)CDf(2020)f(2019)4复数在复平面内对应的点为则( )ABCD5已知盒中有3个红球,3个黄球,3个白球,且每种颜色的三个球均按,编

3、号,现从中摸出3个球(除颜色与编号外球没有区别),则恰好不同时包含字母,的概率为( )ABCD6设函数,当时,则( )ABC1D7若,则“”是“的展开式中项的系数为90”的( )A必要不充分条件B充分不必要条件C充要条件D既不充分也不必要条件8一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )ABCD9已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的( )ABCD10如图是甲、乙两位同学在六次数学小测试(满分100分)中得分情况的茎叶图,则下列说法错误的是( )A甲得分的平均数比乙大B甲得分的极差比乙大C甲

4、得分的方差比乙小D甲得分的中位数和乙相等11已知.给出下列判断:若,且,则;存在使得的图象向右平移个单位长度后得到的图象关于轴对称;若在上恰有7个零点,则的取值范围为;若在上单调递增,则的取值范围为.其中,判断正确的个数为( )A1B2C3D412一个几何体的三视图如图所示,则这个几何体的体积为( ) ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图,是圆的直径,弦的延长线相交于点垂直的延长线于点求证:14定义在封闭的平面区域内任意两点的距离的最大值称为平面区域的“直径”.已知锐角三角形的三个点,在半径为的圆上,且,分别以各边为直径向外作三个半圆,这三个半圆和构成平面区域,则平

5、面区域的“直径”的最大值是_.15已知函数函数,则不等式的解集为_16已知三棱锥,是边长为4的正三角形,分别是、的中点,为棱上一动点(点除外),若异面直线与所成的角为,且,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知点,直线与抛物线交于不同两点、,直线、与抛物线的另一交点分别为两点、,连接,点关于直线的对称点为点,连接、(1)证明:;(2)若的面积,求的取值范围18(12分)如图,在正三棱柱中,分别为,的中点(1)求证:平面;(2)求平面与平面所成二面角锐角的余弦值19(12分)椭圆:()的离心率为,它的四个顶点构成的四边形面积为.(1)求椭圆的方程;

6、(2)设是直线上任意一点,过点作圆的两条切线,切点分别为,求证:直线恒过一个定点.20(12分)已知抛物线:()的焦点到点的距离为.(1)求抛物线的方程;(2)过点作抛物线的两条切线,切点分别为,点、分别在第一和第二象限内,求的面积.21(12分)在中,角,所对的边分别为,已知,角为锐角,的面积为.(1)求角的大小;(2)求的值.22(10分)在中, .求边上的高.,这三个条件中任选一个,补充在上面问题中并作答.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】利用诱导公式和同角三

7、角函数的基本关系求出,再利用二倍角的正弦公式代入求解即可.【题目详解】因为,由诱导公式可得,即,因为,所以,由二倍角的正弦公式可得,所以.故选:D【答案点睛】本题考查诱导公式、同角三角函数的基本关系和二倍角的正弦公式;考查运算求解能力和知识的综合运用能力;属于中档题.2、D【答案解析】由折线图逐项分析即可求解【题目详解】选项,显然正确;对于,选项正确;1.6,1.9,2.2,2.5,2.9不是等差数列,故错.故选:D【答案点睛】本题考查统计的知识,考查数据处理能力和应用意识,是基础题3、B【答案解析】根据函数的周期性以及x3,2的解析式,可作出函数f(x)在定义域上的图象,由此结合选项判断即可

8、.【题目详解】由f(x+2)f(x),得f(x)是周期函数且周期为2,先作出f(x)在x3,2时的图象,然后根据周期为2依次平移,并结合f(x)是偶函数作出f(x)在R上的图象如下,选项A,所以,选项A错误;选项B,因为,所以,所以f(sin3)f(cos3),即f(sin3)f(cos3),选项B正确;选项C,所以,即,选项C错误;选项D,选项D错误.故选:B.【答案点睛】本题考查函数性质的综合运用,考查函数值的大小比较,考查数形结合思想,属于中档题.4、B【答案解析】求得复数,结合复数除法运算,求得的值.【题目详解】易知,则.故选:B【答案点睛】本小题主要考查复数及其坐标的对应,考查复数的

9、除法运算,属于基础题.5、B【答案解析】首先求出基本事件总数,则事件“恰好不同时包含字母,”的对立事件为“取出的3个球的编号恰好为字母,”, 记事件“恰好不同时包含字母,”为,利用对立事件的概率公式计算可得;【题目详解】解:从9个球中摸出3个球,则基本事件总数为(个),则事件“恰好不同时包含字母,”的对立事件为“取出的3个球的编号恰好为字母,”记事件“恰好不同时包含字母,”为,则.故选:B【答案点睛】本题考查了古典概型及其概率计算公式,考查了排列组合的知识,解答的关键在于正确理解题意,属于基础题6、A【答案解析】由降幂公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求

10、得参数值【题目详解】,时,由题意,故选:A【答案点睛】本题考查二倍角公式,考查两角和的正弦公式,考查正弦函数性质,掌握正弦函数性质是解题关键7、B【答案解析】求得的二项展开式的通项为,令时,可得项的系数为90,即,求得,即可得出结果.【题目详解】若则二项展开式的通项为,令,即,则项的系数为,充分性成立;当的展开式中项的系数为90,则有,从而,必要性不成立.故选:B.【答案点睛】本题考查二项式定理、充分条件、必要条件及充要条件的判断知识,考查考生的分析问题的能力和计算能力,难度较易.8、D【答案解析】试题分析:如图所示,截去部分是正方体的一个角,其体积是正方体体积的,剩余部分体积是正方体体积的,

11、所以截去部分体积与剩余部分体积的比值为,故选D.考点:本题主要考查三视图及几何体体积的计算.9、C【答案解析】试题分析:通过对以下四个四棱锥的三视图对照可知,只有选项C是符合要求的.考点:三视图10、B【答案解析】由平均数、方差公式和极差、中位数概念,可得所求结论【题目详解】对于甲,;对于乙,故正确;甲的极差为,乙的极差为,故错误;对于甲,方差.5,对于乙,方差,故正确;甲得分的中位数为,乙得分的中位数为,故正确故选:【答案点睛】本题考查茎叶图的应用,考查平均数和方差等概念,培养计算能力,意在考查学生对这些知识的理解掌握水平,属于基础题11、B【答案解析】对函数化简可得,进而结合三角函数的最值

12、、周期性、单调性、零点、对称性及平移变换,对四个命题逐个分析,可选出答案.【题目详解】因为,所以周期.对于,因为,所以,即,故错误;对于,函数的图象向右平移个单位长度后得到的函数为,其图象关于轴对称,则,解得,故对任意整数,所以错误;对于,令,可得,则,因为,所以在上第1个零点,且,所以第7个零点,若存在第8个零点,则,所以,即,解得,故正确;对于,因为,且,所以,解得,又,所以,故正确.故选:B.【答案点睛】本题考查三角函数的恒等变换,考查三角函数的平移变换、最值、周期性、单调性、零点、对称性,考查学生的计算求解能力与推理能力,属于中档题.12、B【答案解析】还原几何体可知原几何体为半个圆柱

13、和一个四棱锥组成的组合体,分别求解两个部分的体积,加和得到结果.【题目详解】由三视图还原可知,原几何体下半部分为半个圆柱,上半部分为一个四棱锥半个圆柱体积为:四棱锥体积为:原几何体体积为:本题正确选项:【答案点睛】本题考查三视图的还原、组合体体积的求解问题,关键在于能够准确还原几何体,从而分别求解各部分的体积.二、填空题:本题共4小题,每小题5分,共20分。13、证明见解析【答案解析】试题分析:四点共圆,所以,又,所以,即,得证试题解析:A连接,因为为圆的直径,所以,又,则四点共圆,所以又,所以,即,14、【答案解析】先找到平面区域内任意两点的最大值为,再利用三角恒等变换化简即可得到最大值.【

14、题目详解】由已知及正弦定理,得,所以,取AB中点E,AC中点F,BC中点G,如图所示显然平面区域任意两点距离最大值为,而,当且仅当时,等号成立.故答案为:.【答案点睛】本题考查正弦定理在平面几何中的应用问题,涉及到距离的最值问题,在处理这类问题时,一定要数形结合,本题属于中档题.15、【答案解析】,所以,所以的解集为。点睛:本题考查绝对值不等式。本题先对绝对值函数进行分段处理,再得到的解析式,求得的分段函数解析式,再解不等式即可。绝对值函数一般都去绝对值转化为分段函数处理。16、【答案解析】取的中点,连接,取的中点,连接,直线与所成的角为,计算,根据余弦定理计算得到答案。【题目详解】取的中点,连接,依题意可得,所以平面,所以,因为,分别、的中点,所以,因为,所以,所以平面,故,故

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2