1、2023学年高考数学模拟测试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若双曲线:()的一个焦点为,过点的直线与双曲线交于、两点,且的中点为,则的方程为( )ABCD2二
2、项式的展开式中只有第六项的二项式系数最大,则展开式中的常数项是( )A180B90C45D3603设,满足约束条件,则的最大值是( )ABCD4tan570=( )AB-CD5已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为( )A2B3C4D56在一个数列中,如果,都有(为常数),那么这个数列叫做等积数列,叫做这个数列的公积.已知数列是等积数列,且,公积为,则( )ABCD7在三棱锥中,P在底面ABC内的射影D位于直线AC上,且,.设三棱锥的每个顶点都在球Q的球面上,则球Q的半径为( )ABCD8若复数满足,则对应的点位于复平面的( )A第一象限B第二象限C第三象限D第四象限9在区间上
3、随机取一个数,使直线与圆相交的概率为( )ABCD10已知复数z1=3+4i,z2=a+i,且z1是实数,则实数a等于()ABC-D-11已知在平面直角坐标系中,圆:与圆:交于,两点,若,则实数的值为( )A1B2C-1D-212设,则ABCD二、填空题:本题共4小题,每小题5分,共20分。13五声音阶是中国古乐基本音阶,故有成语“五音不全”.中国古乐中的五声音阶依次为:宫、商、角、徵、羽,如果把这五个音阶全用上,排成一个五个音阶的音序,且要求宫、羽两音阶不相邻且在角音阶的同侧,可排成_种不同的音序.14已知为椭圆内一定点,经过引一条弦,使此弦被点平分,则此弦所在的直线方程为_15已知等差数列
4、的各项均为正数,且,若,则_.16已知函数有且只有一个零点,则实数的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列满足(),数列的前项和,(),且,(1)求数列的通项公式:(2)求数列的通项公式(3)设,记是数列的前项和,求正整数,使得对于任意的均有18(12分)已知椭圆的离心率为,且过点.(1)求椭圆C的标准方程;(2)点P是椭圆上异于短轴端点A,B的任意一点,过点P作轴于Q,线段PQ的中点为M.直线AM与直线交于点N,D为线段BN的中点,设O为坐标原点,试判断以OD为直径的圆与点M的位置关系.19(12分)在新中国成立70周年国庆阅兵庆典
5、中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为(),M为该曲线上的任意一点.(1)当时,求M点的极坐标;(2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.20(12分)已知函数(1)若函数在处取得极值1,证明:(2)若恒成立,求实数的取值范围.21(12分)选修4-5:不等式选讲已知函数()解不等式;()对及,不等式恒成立,求实数的取值范围.22(10分)如图,在四棱锥中,底面,底面是直角
6、梯形,为侧棱上一点,已知.()证明:平面平面;()求二面角的余弦值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】求出直线的斜率和方程,代入双曲线的方程,运用韦达定理和中点坐标公式,结合焦点的坐标,可得的方程组,求得的值,即可得到答案.【题目详解】由题意,直线的斜率为,可得直线的方程为,把直线的方程代入双曲线,可得,设,则,由的中点为,可得,解答,又由,即,解得,所以双曲线的标准方程为.故选:D.【答案点睛】本题主要考查了双曲线的标准方程的求解,其中解答中属于运用双曲线的焦点和
7、联立方程组,合理利用根与系数的关系和中点坐标公式是解答的关键,着重考查了推理与运算能力.2、A【答案解析】试题分析:因为的展开式中只有第六项的二项式系数最大,所以,令,则,.考点:1.二项式定理;2.组合数的计算.3、D【答案解析】作出不等式对应的平面区域,由目标函数的几何意义,通过平移即可求z的最大值【题目详解】作出不等式组的可行域,如图阴影部分,作直线:在可行域内平移当过点时,取得最大值.由得:,故选:D【答案点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,属于基础题.4、A【答案解析】直接利用诱导公式化简求解即可【题目详解】tan570=tan(360+210
8、)=tan210=tan(180+30)=tan30=故选:A【答案点睛】本题考查三角函数的恒等变换及化简求值,主要考查诱导公式的应用,属于基础题.5、D【答案解析】试题分析:抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.6、B【答案解析】计算出的值,推导出,再由,结合
9、数列的周期性可求得数列的前项和.【题目详解】由题意可知,则对任意的,则,由,得,因此,.故选:B.【答案点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.7、A【答案解析】设的中点为O先求出外接圆的半径,设,利用平面ABC,得 ,在 及中利用勾股定理构造方程求得球的半径即可【题目详解】设的中点为O,因为,所以外接圆的圆心M在BO上.设此圆的半径为r.因为,所以,解得.因为,所以.设,易知平面ABC,则.因为,所以,即,解得.所以球Q的半径.故选:A【答案点睛】本题考查球的组合体,考查空间想象能力,考查计算求解能力,是中档题8、D【答
10、案解析】利用复数模的计算、复数的除法化简复数,再根据复数的几何意义,即可得答案;【题目详解】,对应的点,对应的点位于复平面的第四象限.故选:D.【答案点睛】本题考查复数模的计算、复数的除法、复数的几何意义,考查运算求解能力,属于基础题.9、C【答案解析】根据直线与圆相交,可求出k的取值范围,根据几何概型可求出相交的概率.【题目详解】因为圆心,半径,直线与圆相交,所以,解得 所以相交的概率,故选C.【答案点睛】本题主要考查了直线与圆的位置关系,几何概型,属于中档题.10、A【答案解析】分析:计算,由z1,是实数得,从而得解.详解:复数z1=3+4i,z2=a+i,.所以z1,是实数,所以,即.故
11、选A.点睛:本题主要考查了复数共轭的概念,属于基础题.11、D【答案解析】由可得,O在AB的中垂线上,结合圆的性质可知O在两个圆心的连线上,从而可求.【题目详解】因为,所以O在AB的中垂线上,即O在两个圆心的连线上,三点共线,所以,得,故选D.【答案点睛】本题主要考查圆的性质应用,几何性质的转化是求解的捷径.12、C【答案解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数
12、化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.二、填空题:本题共4小题,每小题5分,共20分。13、1【答案解析】按照“角”的位置分类,分“角”在两端,在中间,以及在第二个或第四个位置上,即可求出.【题目详解】若“角”在两端,则宫、羽两音阶一定在角音阶同侧,此时有种;若“角”在中间,则不可能出现宫、羽两音阶不相邻且在角音阶的同侧;若“角”在第二个或第四个位置上,则有种;综上,共有种.故答案为:1【答案点睛】本题主要考查利用排列知识解决实际问题,涉及分步计数乘法原理和分类计数加法原理的应用,意在考查学生分类讨论思想的应用和综合运用知识的能力,属于基础
13、题.14、【答案解析】设弦所在的直线与椭圆相交于、两点,利用点差法可求得直线的斜率,进而可求得直线的点斜式方程,化为一般式即可.【题目详解】设弦所在的直线与椭圆相交于、两点,由于点为弦的中点,则,得,由题意得,两式相减得,所以,直线的斜率为,所以,弦所在的直线方程为,即.故答案为:.【答案点睛】本题考查利用弦的中点求弦所在直线的方程,一般利用点差法,也可以利用韦达定理设而不求法来解答,考查计算能力,属于中等题.15、【答案解析】设等差数列的公差为,根据,且,可得,解得,进而得出结论.【题目详解】设公差为,因为,所以,所以,所以 故答案为:【答案点睛】本题主要考查了等差数列的通项公式、需熟记公式
14、,属于基础题.16、【答案解析】当时,转化条件得有唯一实数根,令,通过求导得到的单调性后数形结合即可得解.【题目详解】当时,故不是函数的零点;当时,即,令,当时,;当时,的单调减区间为,增区间为,又 ,可作出的草图,如图:则要使有唯一实数根,则.故答案为:.【答案点睛】本题考查了导数的应用,考查了转化化归思想和数形结合思想,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)()(2),(3)【答案解析】(1)依题意先求出,然后根据 ,求出的通项公式为,再检验的情况即可;(2)由递推公式,得, 结合数列性质可得数列相邻项之间的关系,从而可求出结果;(3)通过(1)、(2)可得,所以,记,利用函数单调性可求的范围,从而列不等式可解.【题目详解】解:(1)因为数列满足();当时,检验当时, 成立.所以,数列的通项公式为()(2)由,得, 所以,