1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并
2、交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若不相等的非零实数,成等差数列,且,成等比数列,则( )ABC2D2设集合则( )ABCD3设函数,的定义域都为,且是奇函数,是偶函数,则下列结论正确的是( )A是偶函数B是奇函数C是奇函数D是奇函数4函数的图象可能是( )ABCD5的展开式中的系数是( )A160B240C280D3206马林梅森是17世纪法国著名的数学家和修道士,也是当时欧洲科学界一位独特的中心人物,梅森在欧几里得、费马等人研究的基础上对2p1作了大量的计算、验证工作,人们为了纪念梅森在数论方面的这一贡献,将形如2
3、P1(其中p是素数)的素数,称为梅森素数.若执行如图所示的程序框图,则输出的梅森素数的个数是( )A3B4C5D67某几何体的三视图如图所示,图中圆的半径为1,等腰三角形的腰长为3,则该几何体表面积为( )ABCD8抛物线的焦点为,则经过点与点且与抛物线的准线相切的圆的个数有( )A1个B2个C0个D无数个9过双曲线的左焦点作倾斜角为的直线,若与轴的交点坐标为,则该双曲线的标准方程可能为( )ABCD10关于函数,下列说法正确的是( )A函数的定义域为B函数一个递增区间为C函数的图像关于直线对称D将函数图像向左平移个单位可得函数的图像11命题“”的否定是( )ABCD12若不等式对于一切恒成立
4、,则的最小值是 ( )A0BCD二、填空题:本题共4小题,每小题5分,共20分。13已知i为虚数单位,复数,则_14抛物线的焦点坐标为_.15在中,角所对的边分别为,为的面积,若,则的形状为_,的大小为_16已知实数x,y满足,则的最大值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在中,角的对边分别为,且满足,线段的中点为.()求角的大小;()已知,求的大小.18(12分)已知公差不为零的等差数列的前n项和为,是与的等比中项.(1)求;(2)设数列满足,求数列的通项公式.19(12分)随着现代社会的发展,我国对于环境保护越来越重视,企业的环保意识也越
5、来越强.现某大型企业为此建立了5套环境监测系统,并制定如下方案:每年企业的环境监测费用预算定为1200万元,日常全天候开启3套环境监测系统,若至少有2套系统监测出排放超标,则立即检查污染源处理系统;若有且只有1套系统监测出排放超标,则立即同时启动另外2套系统进行1小时的监测,且后启动的这2套监测系统中只要有1套系统监测出排放超标,也立即检查污染源处理系统.设每个时间段(以1小时为计量单位)被每套系统监测出排放超标的概率均为,且各个时间段每套系统监测出排放超标情况相互独立.(1)当时,求某个时间段需要检查污染源处理系统的概率;(2)若每套环境监测系统运行成本为300元/小时(不启动则不产生运行费
6、用),除运行费用外,所有的环境监测系统每年的维修和保养费用需要100万元.现以此方案实施,问该企业的环境监测费用是否会超过预算(全年按9000小时计算)?并说明理由.20(12分)(1)已知数列满足:,且(为非零常数,),求数列的前项和;(2)已知数列满足:()对任意的;()对任意的,且.若,求数列是等比数列的充要条件.求证:数列是等比数列,其中.21(12分)已知函数,其导函数为,(1)若,求不等式的解集;(2)证明:对任意的,恒有.22(10分)一酒企为扩大生产规模,决定新建一个底面为长方形的室内发酵馆,发酵馆内有一个无盖长方体发酵池,其底面为长方形(如图所示),其中.结合现有的生产规模,
7、设定修建的发酵池容积为450米,深2米.若池底和池壁每平方米的造价分别为200元和150元,发酵池造价总费用不超过65400元(1)求发酵池边长的范围;(2)在建发酵馆时,发酵池的四周要分别留出两条宽为4米和米的走道(为常数).问:发酵池的边长如何设计,可使得发酵馆占地面积最小.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】由题意,可得,消去得,可得,继而得到,代入即得解【题目详解】由,成等差数列,所以,又,成等比数列,所以,消去得,所以,解得或,因为,是不相等的非零实数,所以
8、,此时,所以故选:A【答案点睛】本题考查了等差等比数列的综合应用,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.2、C【答案解析】直接求交集得到答案.【题目详解】集合,则.故选:.【答案点睛】本题考查了交集运算,属于简单题.3、C【答案解析】根据函数奇偶性的性质即可得到结论【题目详解】解:是奇函数,是偶函数,故函数是奇函数,故错误,为偶函数,故错误,是奇函数,故正确为偶函数,故错误,故选:【答案点睛】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键4、A【答案解析】先判断函数的奇偶性,以及该函数在区间上的函数值符号,结合排除法可得出正确选项.【题目详解】函数的定义
9、域为,该函数为偶函数,排除B、D选项;当时,排除C选项.故选:A.【答案点睛】本题考查根据函数的解析式辨别函数的图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,结合排除法得出结果,考查分析问题和解决问题的能力,属于中等题.5、C【答案解析】首先把看作为一个整体,进而利用二项展开式求得的系数,再求的展开式中的系数,二者相乘即可求解.【题目详解】由二项展开式的通项公式可得的第项为,令,则,又的第为,令,则,所以的系数是.故选:C【答案点睛】本题考查二项展开式指定项的系数,掌握二项展开式的通项是解题的关键,属于基础题.6、C【答案解析】模拟程序的运行即可求出答案【题目详解】解:模拟程
10、序的运行,可得:p1,S1,输出S的值为1,满足条件p7,执行循环体,p3,S7,输出S的值为7,满足条件p7,执行循环体,p5,S31,输出S的值为31,满足条件p7,执行循环体,p7,S127,输出S的值为127,满足条件p7,执行循环体,p9,S511,输出S的值为511,此时,不满足条件p7,退出循环,结束,故若执行如图所示的程序框图,则输出的梅森素数的个数是5,故选:C【答案点睛】本题主要考查程序框图,属于基础题7、C【答案解析】几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,计算得到答案.【题目详解】几何体是由一个圆锥和半球组成,其中半球的半径为1
11、,圆锥的母线长为3,底面半径为1,故几何体的表面积为.故选:.【答案点睛】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.8、B【答案解析】圆心在的中垂线上,经过点,且与相切的圆的圆心到准线的距离与到焦点的距离相等,圆心在抛物线上,直线与抛物线交于2个点,得到2个圆【题目详解】因为点在抛物线上,又焦点,由抛物线的定义知,过点、且与相切的圆的圆心即为线段的垂直平分线与抛物线的交点,这样的交点共有2个,故过点、且与相切的圆的不同情况种数是2种故选:【答案点睛】本题主要考查抛物线的简单性质,本题解题的关键是求出圆心的位置,看出圆心必须在抛物线上,且在垂直平分线上9、A【答案解析】
12、直线的方程为,令,得,得到a,b的关系,结合选项求解即可【题目详解】直线的方程为,令,得.因为,所以,只有选项满足条件.故选:A【答案点睛】本题考查直线与双曲线的位置关系以及双曲线的标准方程,考查运算求解能力.10、B【答案解析】化简到,根据定义域排除,计算单调性知正确,得到答案.【题目详解】,故函数的定义域为,故错误;当时,函数单调递增,故正确;当,关于的对称的直线为不在定义域内,故错误.平移得到的函数定义域为,故不可能为,错误.故选:.【答案点睛】本题考查了三角恒等变换,三角函数单调性,定义域,对称,三角函数平移,意在考查学生的综合应用能力.11、D【答案解析】根据全称命题的否定是特称命题
13、,对命题进行改写即可.【题目详解】全称命题的否定是特称命题,所以命题“,”的否定是:,故选D【答案点睛】本题考查全称命题的否定,难度容易.12、C【答案解析】试题分析:将参数a与变量x分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论解:不等式x2+ax+10对一切x(0,成立,等价于a-x-对于一切成立,y=-x-在区间上是增函数a-a的最小值为-故答案为C考点:不等式的应用点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】先把复数进行化简,然后利用求模公式可得结
14、果.【题目详解】故答案为:.【答案点睛】本题主要考查复数模的求解,利用复数的运算把复数化为的形式是求解的关键,侧重考查数学运算的核心素养.14、【答案解析】变换得到,计算焦点得到答案.【题目详解】抛物线的标准方程为,所以焦点坐标为故答案为:【答案点睛】本题考查了抛物线的焦点坐标,属于简单题.15、等腰三角形 【答案解析】根据正弦定理可得,即的形状为等腰三角形由余弦定理可得,即故答案为等腰三角形,16、1【答案解析】直接用表示出,然后由不等式性质得出结论【题目详解】由题意,又,即,的最大值为1故答案为:1【答案点睛】本题考查不等式的性质,掌握不等式的性质是解题关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、();().【答案解析】()由正弦定理边化角,再结合转化