ImageVerifierCode 换一换
格式:DOC , 页数:19 ,大小:1.89MB ,
资源ID:19939      下载积分:11 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/19939.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023届阿克苏地区阿瓦提县第四中学高三下学期第六次检测数学试卷(含解析).doc)为本站会员(sc****y)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2023届阿克苏地区阿瓦提县第四中学高三下学期第六次检测数学试卷(含解析).doc

1、2023学年高考数学模拟测试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某几何体的三视图如图所示(单位:cm),则该几何体的体积等于( )cm3ABCD2已知命题:任意,都有;命题:,则有则下列命题为真命题的是()ABCD3已知是过抛物线焦点的弦,是原点,则( )A2B4C3D34正三棱锥底面边长为3,侧棱与底面成角

2、,则正三棱锥的外接球的体积为( )ABCD5设分别是双曲线的左右焦点若双曲线上存在点,使,且,则双曲线的离心率为( )AB2CD6若双曲线:()的一个焦点为,过点的直线与双曲线交于、两点,且的中点为,则的方程为( )ABCD7已知点是双曲线上一点,若点到双曲线的两条渐近线的距离之积为,则双曲线的离心率为( )ABCD28若单位向量,夹角为,且,则实数( )A1B2C0或1D2或19已知双曲线的离心率为,抛物线的焦点坐标为,若,则双曲线的渐近线方程为( )ABCD10已知函数,若关于的方程恰好有3个不相等的实数根,则实数的取值范围为( )ABCD11如图是一个几何体的三视图,则这个几何体的体积为

3、( )ABCD12已知复数满足,(为虚数单位),则( )ABCD3二、填空题:本题共4小题,每小题5分,共20分。13已知平面向量,满足|1,|2,的夹角等于,且()()0,则|的取值范围是_14在平面直角坐标系xOy中,己知直线与函数的图象在y轴右侧的公共点从左到右依次为,若点的横坐标为1,则点的横坐标为_.15已知数列满足,则_16已知函数,令,若,表示不超过实数的最大整数,记数列的前项和为,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)为了拓展城市的旅游业,实现不同市区间的物资交流,政府决定在市与市之间建一条直达公路,中间设有至少8个的偶数个十字路口,记

4、为,现规划在每个路口处种植一颗杨树或者木棉树,且种植每种树木的概率均为.(1)现征求两市居民的种植意见,看看哪一种植物更受欢迎,得到的数据如下所示:A市居民B市居民喜欢杨树300200喜欢木棉树250250是否有的把握认为喜欢树木的种类与居民所在的城市具有相关性;(2)若从所有的路口中随机抽取4个路口,恰有个路口种植杨树,求的分布列以及数学期望;(3)在所有的路口种植完成后,选取3个种植同一种树的路口,记总的选取方法数为,求证:.附:0.1000.0500.0100.0012.7063.8416.63510.82818(12分) 选修4 - 5:不等式选讲 已知都是正实数,且,求证: 19(1

5、2分)秉持“绿水青山就是金山银山”的生态文明发展理念,为推动新能源汽车产业迅速发展,有必要调查研究新能源汽车市场的生产与销售.下图是我国某地区年至年新能源汽车的销量(单位:万台)按季度(一年四个季度)统计制成的频率分布直方图. (1)求直方图中的值,并估计销量的中位数;(2)请根据频率分布直方图估计新能源汽车平均每个季度的销售量(同一组数据用该组中间值代表),并以此预计年的销售量.20(12分)在平面直角坐标系xOy中,已知平行于x轴的动直线l交抛物线C:于点P,点F为C的焦点圆心不在y轴上的圆M与直线l,PF,x轴都相切,设M的轨迹为曲线E(1)求曲线E的方程;(2)若直线与曲线E相切于点,

6、过Q且垂直于的直线为,直线,分别与y轴相交于点A,当线段AB的长度最小时,求s的值21(12分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.(1)求的直角坐标方程和的直角坐标;(2)设与交于,两点,线段的中点为,求.22(10分)已知函数,当时,有极大值3;(1)求,的值;(2)求函数的极小值及单调区间.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】解:根据几何体的三视图知,该几何体是三棱柱与半圆

7、柱体的组合体,结合图中数据,计算它的体积为:V=V三棱柱+V半圆柱=221+121=(6+1.5)cm1故答案为6+1.5点睛:根据几何体的三视图知该几何体是三棱柱与半圆柱体的组合体,结合图中数据计算它的体积即可2、B【答案解析】先分别判断命题真假,再由复合命题的真假性,即可得出结论.【题目详解】为真命题;命题是假命题,比如当,或时,则 不成立.则,均为假.故选:B【答案点睛】本题考查复合命题的真假性,判断简单命题的真假是解题的关键,属于基础题.3、D【答案解析】设,设:,联立方程得到,计算得到答案.【题目详解】设,故.易知直线斜率不为,设:,联立方程,得到,故,故.故选:.【答案点睛】本题考

8、查了抛物线中的向量的数量积,设直线为可以简化运算,是解题的关键 .4、D【答案解析】由侧棱与底面所成角及底面边长求得正棱锥的高,再利用勾股定理求得球半径后可得球体积【题目详解】如图,正三棱锥中,是底面的中心,则是正棱锥的高,是侧棱与底面所成的角,即60,由底面边长为3得,正三棱锥外接球球心必在上,设球半径为,则由得,解得,故选:D【答案点睛】本题考查球体积,考查正三棱锥与外接球的关系掌握正棱锥性质是解题关键5、A【答案解析】由及双曲线定义得和(用表示),然后由余弦定理得出的齐次等式后可得离心率【题目详解】由题意,由双曲线定义得,从而得,在中,由余弦定理得,化简得故选:A【答案点睛】本题考查求双

9、曲线的离心率,解题关键是应用双曲线定义用表示出到两焦点的距离,再由余弦定理得出的齐次式6、D【答案解析】求出直线的斜率和方程,代入双曲线的方程,运用韦达定理和中点坐标公式,结合焦点的坐标,可得的方程组,求得的值,即可得到答案.【题目详解】由题意,直线的斜率为,可得直线的方程为,把直线的方程代入双曲线,可得,设,则,由的中点为,可得,解答,又由,即,解得,所以双曲线的标准方程为.故选:D.【答案点睛】本题主要考查了双曲线的标准方程的求解,其中解答中属于运用双曲线的焦点和联立方程组,合理利用根与系数的关系和中点坐标公式是解答的关键,着重考查了推理与运算能力.7、A【答案解析】设点的坐标为,代入椭圆

10、方程可得,然后分别求出点到两条渐近线的距离,由距离之积为,并结合,可得到的齐次方程,进而可求出离心率的值.【题目详解】设点的坐标为,有,得.双曲线的两条渐近线方程为和,则点到双曲线的两条渐近线的距离之积为,所以,则,即,故,即,所以.故选:A.【答案点睛】本题考查双曲线的离心率,构造的齐次方程是解决本题的关键,属于中档题.8、D【答案解析】利用向量模的运算列方程,结合向量数量积的运算,求得实数的值.【题目详解】由于,所以,即,即,解得或.故选:D【答案点睛】本小题主要考查向量模的运算,考查向量数量积的运算,属于基础题.9、A【答案解析】求出抛物线的焦点坐标,得到双曲线的离心率,然后求解a,b关

11、系,即可得到双曲线的渐近线方程【题目详解】抛物线y22px(p0)的焦点坐标为(1,0),则p2,又ep,所以e2,可得c24a2a2+b2,可得:ba,所以双曲线的渐近线方程为:y故选:A【答案点睛】本题考查双曲线的离心率以及双曲线渐近线方程的求法,涉及抛物线的简单性质的应用10、D【答案解析】讨论,三种情况,求导得到单调区间,画出函数图像,根据图像得到答案.【题目详解】当时,故,函数在上单调递增,在上单调递减,且;当时,;当时,函数单调递减;如图所示画出函数图像,则,故.故选:.【答案点睛】本题考查了利用导数求函数的零点问题,意在考查学生的计算能力和应用能力.11、A【答案解析】由三视图还

12、原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1再由球与圆柱体积公式求解【题目详解】由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1则几何体的体积为故选:【答案点睛】本题主要考查由三视图求面积、体积,关键是由三视图还原原几何体,意在考查学生对这些知识的理解掌握水平12、A【答案解析】,故,故选A.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】计算得到|,|cos1,解得cos,根据三角函数的有界性计算范围得到答案.【题目详解】由()()0 可得

13、()|cos12cos|cos1,为与的夹角再由 21+4+212cos7 可得|,|cos1,解得cos0,1cos1,1,即|+10,解得 |,故答案为【答案点睛】本题考查了向量模的范围,意在考查学生的计算能力,利用三角函数的有界性是解题的关键.14、1【答案解析】当时,得,或,依题意可得,可求得,继而可得答案【题目详解】因为点的横坐标为1,即当时,所以或,又直线与函数的图象在轴右侧的公共点从左到右依次为,所以,故,所以函数的关系式为当时,(1),即点的横坐标为1,为二函数的图象的第二个公共点故答案为:1【答案点睛】本题考查三角函数关系式的恒等变换、正弦型函数的性质的应用,主要考查学生的运算能力及思维能力,属于中档题15、【答案解析】项和转化可得,讨论是否满足,分段表示即得解【题目详解】当时,由已知,可得,故,由-得,显然当时不满足上式,故答案为:【答案点睛】本题考查了利用求,考查了学生综合分析,转化划归,数学运算,分类讨论的能力,属于中档题.16、4【答案解析】根据导数的运算,结合数列的通项公式的求法,求得,进而得到,再利用放缩法和取整函数的定义,即可求解.【题目详解】由题意,函数,且,可得,又由,可得为常数列,且,数列表示首项为4,公差为2的等差数列,所以,其中数列满足,所以,所以,又由,可得数列的前n项和为,数列的

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2