ImageVerifierCode 换一换
格式:DOC , 页数:19 ,大小:1.40MB ,
资源ID:20038      下载积分:11 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/20038.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023届湖北省黄冈市、黄石市等八市高三下学期第一次联考数学试卷(含解析).doc)为本站会员(g****t)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2023届湖北省黄冈市、黄石市等八市高三下学期第一次联考数学试卷(含解析).doc

1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知实数满足则的最大值为( )A2BC1D02设分别为的三边的中点,则( )ABCD3一个几何体的三视图及尺寸如下图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,该几何体的表面积是 ( ) ABCD4设为非零实数,且,则(

2、 )ABCD5已知函数(其中为自然对数的底数)有两个零点,则实数的取值范围是( )ABCD6 “”是“函数(为常数)为幂函数”的()A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件7若满足,且目标函数的最大值为2,则的最小值为( )A8B4CD68设双曲线的左右焦点分别为,点.已知动点在双曲线的右支上,且点不共线.若的周长的最小值为,则双曲线的离心率的取值范围是( )ABCD9等腰直角三角形的斜边AB为正四面体侧棱,直角边AE绕斜边AB旋转,则在旋转的过程中,有下列说法:(1)四面体EBCD的体积有最大值和最小值;(2)存在某个位置,使得;(3)设二面角的平面角为,则;(4)A

3、E的中点M与AB的中点N连线交平面BCD于点P,则点P的轨迹为椭圆.其中,正确说法的个数是( )A1B2C3D410元代数学家朱世杰的数学名著算术启蒙是中国古代代数学的通论,其中关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序图,若,则输出的( )A3B4C5D611已知椭圆的短轴长为2,焦距为分别是椭圆的左、右焦点,若点为上的任意一点,则的取值范围为( )ABCD12已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则的值为( )A2B3C4D二、填空题:本题共4小题,每小题5分,共20分。13函数的定义

4、域为_14已知正数a,b满足a+b=1,则的最小值等于_ ,此时a=_.15已知圆C:经过抛物线E:的焦点,则抛物线E的准线与圆C相交所得弦长是_.16现有一块边长为a的正方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖方盒,该方盒容积的最大值是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知.(1)当时,求不等式的解集;(2)若,证明:.18(12分)已知在中,角,的对边分别为,且.(1)求的值;(2)若,求面积的最大值.19(12分)已知函数(1)解不等式;(2)若函数,若对于任意的,都存在,使得成立,求实数的取值范围.20(12分)已知

5、直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设点,直线与曲线交于两点,求的值.21(12分)已知函数(1)求不等式的解集;(2)若函数的定义域为,求实数 的取值范围22(10分)设的内角的对边分别为,已知.(1)求;(2)若为锐角三角形,求的取值范围.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】作出可行域,平移目标直线即可求解.【题目详解】解:作出可行域:由得,由图形知,经过点

6、时,其截距最大,此时最大得,当时,故选:B【答案点睛】考查线性规划,是基础题.2、B【答案解析】根据题意,画出几何图形,根据向量加法的线性运算即可求解.【题目详解】根据题意,可得几何关系如下图所示:,故选:B【答案点睛】本题考查了向量加法的线性运算,属于基础题.3、D【答案解析】由三视图可知该几何体的直观图是轴截面在水平面上的半个圆锥,表面积为,故选D4、C【答案解析】取,计算知错误,根据不等式性质知正确,得到答案.【题目详解】,故,故正确;取,计算知错误;故选:.【答案点睛】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.5、B【答案解析】求出导函数,确定函数的单调性,确定函数的

7、最值,根据零点存在定理可确定参数范围【题目详解】,当时,单调递增,当时,单调递减,在上只有一个极大值也是最大值,显然时,时,因此要使函数有两个零点,则,故选:B【答案点睛】本题考查函数的零点,考查用导数研究函数的最值,根据零点存在定理确定参数范围6、A【答案解析】根据幂函数定义,求得的值,结合充分条件与必要条件的概念即可判断.【题目详解】当函数为幂函数时,解得或,“”是“函数为幂函数”的充分不必要条件.故选:A.【答案点睛】本题考查了充分必要条件的概念和判断,幂函数定义的应用,属于基础题.7、A【答案解析】作出可行域,由,可得.当直线过可行域内的点时,最大,可得.再由基本不等式可求的最小值.【

8、题目详解】作出可行域,如图所示由,可得.平移直线,当直线过可行域内的点时,最大,即最大,最大值为2.解方程组,得.,当且仅当,即时,等号成立.的最小值为8.故选:.【答案点睛】本题考查简单的线性规划,考查基本不等式,属于中档题.8、A【答案解析】依题意可得即可得到,从而求出双曲线的离心率的取值范围;【题目详解】解:依题意可得如下图象,所以则所以所以所以,即故选:A【答案点睛】本题考查双曲线的简单几何性质,属于中档题.9、C【答案解析】解:对于(1),当CD平面ABE,且E在AB的右上方时,E到平面BCD的距离最大,当CD平面ABE,且E在AB的左下方时,E到平面BCD的距离最小,四面体EBCD

9、的体积有最大值和最小值,故(1)正确;对于(2),连接DE,若存在某个位置,使得AEBD,又AEBE,则AE平面BDE,可得AEDE,进一步可得AEDE,此时EABD为正三棱锥,故(2)正确;对于(3),取AB中点O,连接DO,EO,则DOE为二面角DABE的平面角,为,直角边AE绕斜边AB旋转,则在旋转的过程中,0,),DAE,),所以DAE不成立(3)不正确;对于(4)AE的中点M与AB的中点N连线交平面BCD于点P,P到BC的距离为:dPBC,因为1,所以点P的轨迹为椭圆(4)正确故选:C点睛:该题考查的是有关多面体和旋转体对应的特征,以几何体为载体,考查相关的空间关系,在解题的过程中,

10、需要认真分析,得到结果,注意对知识点的灵活运用.10、B【答案解析】分析:根据流程图中的可知,每次循环的值应是一个等比数列,公比为;根据流程图中的可知,每次循环的值应是一个等比数列,公比为,根据每次循环得到的的值的大小决定循环的次数即可.详解: 记执行第次循环时,的值记为有,则有;记执行第次循环时,的值记为有,则有.令,则有,故,故选B.点睛:本题为算法中的循环结构和数列通项的综合,属于中档题,解题时注意流程图中蕴含的数列关系(比如相邻项满足等比数列、等差数列的定义,是否是求数列的前和、前项积等).11、D【答案解析】先求出椭圆方程,再利用椭圆的定义得到,利用二次函数的性质可求,从而可得的取值

11、范围.【题目详解】由题设有,故,故椭圆,因为点为上的任意一点,故.又,因为,故,所以.故选:D.【答案点睛】本题考查椭圆的几何性质,一般地,如果椭圆的左、右焦点分别是,点为上的任意一点,则有,我们常用这个性质来考虑与焦点三角形有关的问题,本题属于基础题.12、B【答案解析】因为将函数(,)的图象向右平移个单位长度后得到函数的图象,可得,结合已知,即可求得答案.【题目详解】将函数(,)的图象向右平移个单位长度后得到函数的图象,又和的图象都关于对称,由,得,即,又,.故选:B.【答案点睛】本题主要考查了三角函数图象平移和根据图象对称求参数,解题关键是掌握三角函数图象平移的解法和正弦函数图象的特征,

12、考查了分析能力和计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】根据函数成立的条件列不等式组,求解即可得定义域.【题目详解】解:要使函数有意义,则 ,即.则定义域为: .故答案为: 【答案点睛】本题主要考查定义域的求解,要熟练掌握张建函数成立的条件.14、3 【答案解析】根据题意,分析可得,由基本不等式的性质可得最小值,进而分析基本不等式成立的条件可得a的值,即可得答案【题目详解】根据题意,正数a、b满足,则,当且仅当时,等号成立,故的最小值为3,此时.故答案为:3;.【答案点睛】本题考查基本不等式及其应用,考查转化与化归能力,属于基础题.15、【答案解

13、析】求出抛物线的焦点坐标,代入圆的方程,求出的值,再求出准线方程,利用点到直线的距离公式,求出弦心距,利用勾股定理可以求出弦长的一半,进而求出弦长【题目详解】抛物线E: 的准线为,焦点为(0,1),把焦点的坐标代入圆的方程中,得,所以圆心的坐标为,半径为5,则圆心到准线的距离为1,所以弦长【答案点睛】本题考查了抛物线的准线、圆的弦长公式16、【答案解析】由题意容积,求导研究单调性,分析即得解.【题目详解】由题意:容积,则,由得或(舍去),令则为V在定义域内唯一的极大值点也是最大值点,此时.故答案为:【答案点睛】本题考查了导数在实际问题中的应用,考查了学生数学建模,转化划归,数学运算的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1) (2)见证明【答案解析】(1) 利用零点分段法讨论去掉绝对值求解;(2) 利用绝对值不等式的性质进行证明.【题目详解】(1)解:当时,不等式可化为.当时,所以;当时,.所以不等式的解集是.(2)证明:由,得,又,所以,即.【答案点睛】本题主要考查含有绝对值不等式问题的求解,含有绝对值不等式的解法一般是使用零点分段讨论法.18、 (1);(2) .【答案解析】分析:(1)在式子中运用正弦、余弦定理后可得(2)由经三角变换可得,然后运用余弦定理可得,从而得到,故得详解:(1)由题意及正、余弦定理得, 整理得,

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2